
ceXML - an XML vocabulary for
building and civil engineering

Reinout van Rees
Delft University of Technology - Faculty of Civil Engineering and

Geosciences
Section Civil Engineering Informatics

ceXML - an XML vocabulary for building and civil engineering
by Reinout van Rees

Published August 2000

Dedication
For Annie, who wants to marry me the 10th of November 2000 and for my parents,
for their support all those years!

6

Table of Contents
Preface...15

1. General introduction..15
2. Structure of the document..15
3. Typographical conventions..16
4. Personal remarks..16

I. Outlining the problem ..17

1. eConstruct project..19
1.1. What will eConstruct do...19
1.2. Relevance to this graduation project...19

2. Current state of communication in the building and construction industry.21
2.1. Usage of communication technologies in the building and

construction industry..21
2.1.1. The nature of the industry..21
2.1.2. Communication defined...22
2.1.3. The current state of electronic communication......................23
2.1.4. Specific problems for European communication...................24

2.2. Existing solutions for electronic communication.............................25
2.2.1. Standard for the exchange of product model data (STEP)....25
2.2.2. Industry Foundation Classes (IFC)..26
2.2.3. Electronic Data Interchange (EDI)..26
2.2.4. Use of XML within IFC, EDI and STEP...............................27

2.3. Conclusion..27
3. The goal of this research project..29

3.1. Suggestions for improvement...29
3.2. Possible advantages..30
3.3. Description of the goal..32

3.3.1. Discussion of the actual need...32
3.3.2. Short goal description..33
3.3.3. The objectives of this research...33

II. The building stones: XML and other initiatives ..35

4. Introduction on communicating with a vocabulary written in XML...........37
4.1. Internet technology as a possible new solution.................................37
4.2. General working of XML...38
4.3. Making an XML vocabulary...40

7

4.4. Conclusion..40
5. Initiatives which influenced ceXML..43

5.1. Electronic Business XML (ebXML)...43
5.1.1. Introduction on ebXML...43
5.1.2. ebXML’s context mechanism...44
5.1.3. Semantic level..46
5.1.4. Business processes...47
5.1.5. Influence on ceXML..47

5.2. Global Engineering Networking (GEN)...48
5.2.1. Introduction on GEN..48
5.2.2. Architecture of GEN..49
5.2.3. Usage of GEN..50
5.2.4. Influence of GEN on ceXML...51

5.3. LexiCon...52
5.3.1. Inner workings of LexiCon..52
5.3.2. Underlying model..53
5.3.3. Functional unit and technical solution...................................54
5.3.4. Influence on ceXML..55

5.4. Conclusions...55

III. Design and implementation of the vocabulary...57

6. Design of the vocabulary...59
6.1. Detailed requirements specification..59

6.1.1. Goals..59
6.1.2. Requirements...60

6.2. Overview of the structure..61
6.3. Business Processes model...62
6.4. The envelope model..64
6.5. The message model...65

6.5.1. Difference between a model and a view................................65
6.5.2. The need for both a model and a view...................................66
6.5.3. The model..67
6.5.4. The view...72

6.6. Selection of elements..75
7. Prototype implementation..79

7.1. Implementation method..79
7.1.1. Unix style of programming..79
7.1.2. Programming language and tools...79

8

7.1.2.1. XSL/T...80
7.1.2.2. Python...80
7.1.2.3. Sed...81
7.1.2.4. CSS...81

7.1.3. Usability...81
7.2. Generic utilities...82

7.2.1. ceXML convenience functions..82
7.2.2. Selecting a language..83
7.2.3. Propagation of characteristics..83
7.2.4. Rejoining of characteristics..84
7.2.5. Conclusions..84

7.3. Dealing with the vocabulary and the views......................................84
7.3.1. The DTD of the message vocabulary.....................................85
7.3.2. The filling of the message vocabulary...................................85
7.3.3. Generating the uni-lingual views...85
7.3.4. Creating the English and Dutch catalogs...............................86
7.3.5. Conclusions..86

7.4. Visualising...86
7.4.1. Visualising the filled message vocabulary.............................86
7.4.2. Visualising the catalogs..88
7.4.3. Conclusions..90

7.5. Using business processes and contexts...90
7.5.1. The message that is send..91
7.5.2. Sending and receiving the message.......................................93
7.5.3. Processing the message..93
7.5.4. Sending a reply..94
7.5.5. Conclusions..95

7.6. Conclusions...96

8. Conclusions...97

8.1. Conclusions fromPart I inceXML - an XML vocabulary for building and
civil engineering: outlining the problem..97

8.2. Conclusions fromPart II inceXML - an XML vocabulary for building and
civil engineering: the building stones: XML and other initiatives...........97

8.3. Conclusions fromPart III in ceXML - an XML vocabulary for building and
civil engineering: Design and implementation of the vocabulary...........98

8.4. Successfulness of this research project...98
8.4.1. Investigating the state of the art...99

9

8.4.2. The design and implementation of a vocabulary...........................99
8.4.3. Prototype implementation..100

8.5. Perspective for the building and construction industry...........................100
8.6. My personal appraisal of this research project.......................................101

IV. Appendices...103

A. Deeper introduction on XML and related technologies............................105
A.1. eXtensible Markup Language (XML) itself...................................105

A.1.1. Introduction to XML...105
A.1.2. Structure of XML..106
A.1.3. Usage of XML..107

A.2. eXtensible Stylesheet Language/Transformation part (XSL/T)....108
A.2.1. Background...108
A.2.2. Working of XSL/T..109
A.2.3. Example usage: transforming database output....................110
A.2.4. Compiling stylesheets...113
A.2.5. Possible use for ceXML..113

A.3. Stylesheet languages for visualisation...114
A.3.1. Difference Cascading Style Sheets (CSS) and eXtensible

Stylesheet Language/Formatting Objects (XSL/FO).............114
A.3.2. Usage of stylesheets..114
A.3.3. Use for ceXML...115

A.4. XML Namespaces..116
A.4.1. Working...116
A.4.2. Design decisions involving namespaces.............................117
A.4.3. Conclusions...117

A.5. XML Linking ...117
A.5.1. Introduction...118
A.5.2. Working...118
A.5.3. Possible uses...119
A.5.4. Possible use for ceXML..120

A.6. Cocoon - Apache’s xml effort..120
A.6.1. Background...121
A.6.2. Working of cocoon..121
A.6.3. Possible use for ceXML..121

B. STEP explained in more detail..123
C. Reading Unified Modelling Language (UML) diagrams..........................125

C.1. Use Case diagram...125

10

C.2. Class diagram...125
D. Python listings...127

D.1. cexmlhelper.py...127
D.2. dtdbuilder.py...128
D.3. treeview.cgi..129
D.4. print.py...130

E. XSL/T listings...131
E.1. language-.xslt..131
E.2. propagate.xslt..132
E.3. rejoin.xslt..134
E.4. search.xslt...138
E.5. print_answer.xslt...140

F. Document Type Definitions (DTD’s)..143
F.1. cexml_message.dtd...143
F.2. cexml_en.dtd...145
F.3. cexml_nl.dtd..146
F.4. pce_en_procurement.dtd...147

G. XML files..151
G.1. cexml.xml...151
G.2. catalog.xml...155

Bibliography ...157

Glossary..159

Colophon...165

11

12

List of Figures
3-1. PalmPilot with project management software..31
5-1. Logical architecture of GEN according to [Radeke, 1998]..............................49
5-2. Handling of data in GENial..50
5-3. The GENial interface..51
5-4. The structure of LexiCon..53
5-5. UML diagram of the LexiCon meta-model..54
5-6. Explanation functional unit and technical solution ("the hamburger model")

[W. Gielingh, 1988]...55
6-1. Overview of the relations between the Business Process, the message and the

envelope vocabulary...61
6-2. Business Process Use Case 1..62
6-3. Business Process Use Case 2..63
6-4. Business process model..64
6-5. Model of the envelope vocabulary..65
6-6. The message model - 1...68
6-7. Example of a tree structure...68
6-8. The message model - 2...69
6-9. The message model - 3...70
6-10. The message model - 4...71
6-11. The message model - 5 (final version)..71
6-12. Both Use Cases together...72
6-13. Initial version of the example view...73
6-14. Initial version of the example view - XML version..74
6-15. Definitive version of the example view..75
6-16. Definitive version of the example view - XML version.................................75
7-1. Dutch view on the filled message vocabulary..87
7-2. English view on the filled message vocabulary..87
7-3. The Dutch catalog in English...89
7-4. The content of both catalogs in English...89
7-5. The working of the context-manager..91
7-6. Screen-shot of the printed answer in Acrobat Reader......................................94
C-1. Use Case diagram example..125
C-2. Class diagram example..126

13

List of Examples
4-1. XML example - The plain information without any indication about what it

really is...38
4-2. XML example - The same information, now tagged to make an xml file out of

it. ..39
7-1. request1.xml...92
7-2. sender.py...93
A-1. XML syntax example..106
A-2. XSL/T - basic example..109
A-3. XSL/T example - database table structure...110
A-4. XSL/T example - xml file before transformation..110
A-5. XSL/T example - xml file after processing with cocoon’s SQL processor...111
A-6. XSL/T example - the stylesheet...112
A-7. XSL/FO example...114
A-8. CSS example..115
A-9. Example use of namespaces to distinguish between two title tags, one

indicating a chapter’s title, the other indicating a person’s title.....................116

14

Preface

Engineers never lie, we just
approximate the truth.

1. General introduction
This document is my Master’s Thesis (afstudeerverslag) for Civil Engineering
Informatics. The work for this thesis for the largest part also constituted my work
for the eConstruct project. This is a European project for the building and
construction industry. ceXML serves as a first prototype of eConstruct’s own XML
vocabulary, bcXML. It shows off several implementation possibilities. Working in
this international project brought me in contact with a whole new research world,
which I liked, therefore prompting me to continue as a PhD student on the same
subject.

My supervisors are:

• Prof. ir. Frits Tolman

• Dr. ir. Reza Beheshti

• Dr. ir. Michel Böhms

2. Structure of the document
Chapter 1describes the eConstruct project. Started in January 2000, the eConstruct
(Electronic business in the building and CONSTRUCTion industry: preparing for
the new internet) project aims to make electronic communication a reality in the -
still mainly paper based - building and construction industry. During my graduation,
I was enlisted in this project and I will also continue on eConstruct as a PhD student.

Chapter 2is a survey on the current state of communication in the building and
construction industry. A comparison with other industries clearly outlines the
specific problems present in the building and construction industry. This chapter

15

Preface

zooms in mainly on theelectroniccommunication, this being the subject of this
project.

The purpose ofChapter 3is to serve as a guideline for the rest of the document,
showing the direction the research has to take.

XML is a major building stone for this research project and therefore deserves a
chapter of it’s own describing it. (Chapter 4)

The purpose ofChapter 5is to provide a basis for the design and implementation
described inChapter 6andChapter 7. My design and implementation are
influenced mainly by three initiatives, who will serve as the underlying basis:
ebXML (electronic business XML), GEN (Global Engineering Networking) and the
LexiCon (a set of programs made by STABU).

Chapter 6describes the underlying design of the vocabulary: the models. Each
model is depicted using an Unified Modelling Language (UML) diagram.

The goal ofChapter 7is to describe the implementation of the vocabulary of the
previous chapter. It has to be a proof-of-concept.

The last chapter first lists the most important conclusions from the entire document.
This is followed by a comparison of the results and the original objectives. It closes
with a personal appraisal of the research project.

3. Typographical conventions
There are a few typographical conventions I used throughout this document. Text in
italics is either important or it signifies a specific concept, like afloor to stand on.
Text in mono-type font signifies computer code or tag names. There is a
difference between built object andbuiltobject . In the latter case, I indicate the
element from an XML file.

4. Personal remarks
Thanks go to Jan Peter, Jako, Reza, Michel, Frits, Martijn, Maurits, Herman and
Annie for proofreading this document and providing useful input and for finding
many errors.

16

I. Outlining the problem
Table of Contents

1. eConstruct project...19

2. Current state of communication in the building and construction industry21

3. The goal of this research project...29

Chapter 1. eConstruct project

"If hate and war could solve
anything, don’t you think they’d
have solved it a long time ago?"
- Geoff Mann

Started in January 2000, the eConstruct (Electronic business in the building and
CONSTRUCTion industry: preparing for the new internet) project aims to make
electronic communication a reality in the - still mainly paper based - building and
construction industry. Wide-spread electronic communication will greatly improve
the effectiveness and efficiency of both the industry as a whole and individual
companies.

1.1. What will eConstruct do
eConstruct will design and build a vocabulary for electronic communication. For
this, eConstruct will use the Internet and especially the new XML1 (eXtensible
Markup Language) technology. Just like a vocabulary for the language of a human
being, this one defines what can be communicated about buildings, bridges,
construction contracts, progress reports, etcetera, but now by computers. Software
will be made and adapted to show the feasibility of the concept. This will not be
"just a good concept", it will be supported by applications and integrated in a
number of existing platforms. eConstruct will actively push adoption of the
technology.

1. XML is explained inSection 4.2.

19

Chapter 1. eConstruct project

1.2. Relevance to this graduation project
For my graduation, I have been enlisted into the eConstruct project. After
graduation, I will continue working on eConstruct as a PhD student. For eConstruct
I have mainly investigated XML and related technologies, many of which findings
have been used in eConstruct’s first report. This report contains basic information
about XML and the surrounding standards, including how best to apply them.
Related initiatives are also highlighted.

ceXML serves as a prototype for eConstruct’s own XML vocabulary, bcXML
(building and construction XML). The intended purpose of my graduation project
was to have me investigate a lot of possible technologies, to make me grab a few
useful ones and to let me build a prototype with it. This should produce a good
insight in the usability of the chosen technologies and provide useful input for the
eConstruct project.

This document contains most of the text I produced for eConstruct. The graduation
project itself basically is a stripped-down and somewhat premature version of
eConstruct: to investigate XML, to make a simple vocabulary and to make an
prototype implementation, showing the feasibility and usability of the vocabulary.

20

Chapter 2. Current state of
communication in the building and
construction industry

Lies, damned lies and project
estimates

This chapter is a survey on the current state of communication in the building and
construction industry. A comparison with other industries clearly outlines the
specific problems present in the building and construction industry. This chapter
zooms in mainly onelectroniccommunication, the subject of this project.

First, the characteristics of the industry are outlined. This is followed by three
current solutions to the electronic communication problem. They haven’t gained
widespread acceptance in the building and construction industry because of the
specific industry characteristics.

2.1. Usage of communication technologies in
the building and construction industry

This section outlines the nature of the industry, because this nature brings about
specific problems which have a large impact on the kind of communication. A
definition of the communication at hand and the current state is also provided.

2.1.1. The nature of the industry
The nature of the building and construction industry is best described by noting the
differences with other major industries:

21

Chapter 2. Current state of communication in the building and construction industry

• There are no players large enough to drive and prescribe certain technological
developments. Even the big players are small compared to the combined size of
all small 1-to-10-men companies and especially when compared with the
Volkswagens, Unilevers and Nokias of other industries.

• The profits generated by the industry generally aren’t high, so no large
investment to solve big generic problems is available1.

• The supplier and subcontractor relationships are manifold, ever changing and
diverse, resulting in more complex communication and supply chains than in
most other industries.

• Though many who work in the building and construction industry are highly
skilled, most of them are not highly educated2. Most of them are blue collar
workers with a few white collars working at the company’s office. Especially the
large amount of very small companies consists almost solely of blue collar
workers. For the blue collars, using modern computer equipment and it’s
possibilities will, probably correctly, not be the first natural thing on their mind.

2.1.2. Communication defined
To prevent confusion, we first need to definecommunication technology. This is
basically the use of technologies to communicate with other people, thus,
everything from the postal service to wireless phones and Internet. This report
restricts itself to the electronic kind of communication and specifically the indirect

1. An exception is when a specialised piece of equipment is needed for a large project. Or that the
project itself requires a huge and expensive planning effort. See the storm surge barrier in the
Scheld estuary in the Netherlands, where a few vessels were purpose-build for that single project
and were not used ever since. These huge investments are normally covered by the project’s price
tag. The incentive for the one paying the constructor for a specific projectalsoto pay for the costly
development of a solution to a generic problem that persists across the entire industry will be low.
The conclusion is that there are no large investments available to solve big generic problems.

2. By highly educated I mean those who have studied civil engineering, management etc. as opposed
to those who learned to be masons, road builders, etc. The distinction is important, for (in most
cases) the first group will have had much more contact with computers etc. than the second group.

22

Chapter 2. Current state of communication in the building and construction industry

way of communication. Telephones and such are not considered, because they are
just a different way of talking directly. So it is about electronically exchanging
information that is normally communicated on paper.

Written information is very important in building and construction. Many things
have to be explicitly stated on paper because of the following reasons:

• One needs to be able to verify the safety of a construction. For example the
structural strength of a building, the fire resistance, the resistance of a stadium to
supporters jumping up and down in unison. This verification cannot be performed
without specific, written data.

• The legal system, government regulations and the current building practice need
verifiable information, specifications, written deadlines, etcetera. Legal reasons in
this case mean both commercial legislation (enforcement of contracts,
agreed-upon standards of work) and building legislation (regulations for building
safety, strength, etcetera).

• The complexity of construction projects and the multitude of partners
co-operating makes it impossible to rely on just a few people’s minds to store all
the required information.

In the building and construction industry, there is a huge amount of information that
needs to be communicated. Technical data is needed by the subcontractors. Also the
safety checkers need to be able to verify exactly the correctness of all technical
data. The project planning must be communicated to every worker, taking the form
of work orders. Also suppliers need to know when to deliver which goods. To stress
it again, all this has to be done in writing.

Current practice in the building and construction industry is mainly paper-based. If
an electronic way of communication could reach the same level of trust and - also
important - the same legal status, it could replace much of the paper-based
communication, with it’s advantages of speed and accuracy.

2.1.3. The current state of electronic communication
For electronic communication (also: using computers) between partners, the only
two presently viable options are the following:

23

Chapter 2. Current state of communication in the building and construction industry

Standardise on a specific platform and one specific set of applications:

This option leads to enormous costs for firms, because they practically need to
buy every major program in existence since most building firms take part in
multiple projects. Every project may standardise on a specific solution, but for
every project this will be a different choice, hence the problem.

Use the lowest common denominator between various platforms and applications:

The problem with this option is that the common subset supported by all
available programs is too small. If you strip off every program’s functionality
that isn’t supported by all other programs, the functionality drops enough to
render the program unusable.

As both options are entirely unattractive, the effect is that the communication isnot
done electronically. It is not feasible either because of the costs involved, or because
practically no sensible communication is possible. The majority of communication
is done on paper. Because the distribution of paper based documents is slow (using
a fax is the fastest method) and takes effort, getting the right information to the right
persons on time is difficult. This lowers the effectiveness and efficiency of the
building and construction industry when compared to other industries. Electronic
communication can counter this by allowing for an automated distribution of
information with unprecedented speed, provided that a suitable way of
communicating electronically is found.

2.1.4. Specific problems for European communication
Communicating in a European setting poses two additional problems, the language
problem and the classification problem.

The language problem is quite straightforward. Adoor in English is adeur in Dutch
and aTür in German. The problems are much bigger when it is no longer just a case
of translating one word into another. Different languages (and countries) often
attach different meanings to concepts. Aconceptcan be something that is easily
understood, like adoor3 . But when you talk about thefirst floor, some languages
mean the floor situated at street level, while other languages use the conceptfirst

3. Even with an easy concept likedoor, you have the problem of whether or not you just mean the
actual door or also the door frame, the lock and the paint work.

24

Chapter 2. Current state of communication in the building and construction industry

floor to indicate the first floor above street level, basically counting from zero. Also,
when talking aboutfoundationandsuperstructure, one country indicates everything
mounted upon the foundation poles withsuperstructure, while another country
includes the bottom floor when talking aboutfoundation.

Communication across borders requires a mechanism to provide a mapping from
one concept onto another, which is a sizable job in Europe.

2.2. Existing solutions for electronic
communication

Already some initiatives have tried to facilitate electronic communication: IFC
(Industry Foundation Classes,Section 2.2.2) which is specific to the building and
construction industry, STEP (STandard for the Exchange of Product model data,
Section 2.2.1) and EDI (Electronic Data Interchange,Section 2.2.3), with the last
two being more generic approaches. These three initiatives are introduced in the
following three sections.

2.2.1. Standard for the exchange of product model data
(STEP)

The STandard for the Exchange of Product model data (STEP) constitutes a
standard way of dealing with product data. The STEP standard is very strict. The
fact that testing for conformance to standard is build into the standard testifies of it’s
solidity. A detailed outline of the inner workings of STEP can be found inAppendix
B.

Practically, STEP is used by the major players in the automobile, shipbuilding, oil
drilling and airplane manufacturing business. They prescribe STEP to their selected
suppliers, which they are able to do by means of their sheer size. Given the limited
use they get out of it, the software is too expensive for small companies (like many

25

Chapter 2. Current state of communication in the building and construction industry

building and construction companies!), since it doesn’t add much in the sense of
additional profits. The variety of contacts, suppliers, goods, one-off deals etc. is
simply too big to achieve economy of scale on a sufficient large number of them to
warrant using a standardised STEP product exchange with an expensive software
package.

2.2.2. Industry Foundation Classes (IFC)
IFC (Industry Foundation Classes) is a counterpart of STEP, especially for the
building and construction industry. It is meant for representing electronicallythings
that occur in a constructed facility, both physical things like doors and floors and
abstract things like organisation, space, cost. Everything is divided into classes. A
class describes common characteristics of a range of similar things. For instance, a
class can describe load-bearing things like floors, bridges, elevators. It concentrates
on the load-bearing characteristics those things have.

Classes can describe both physical objects (likea bridge) and abstract attributes
etcetera (likethe costs). So, multiple classes together can provide the information
associated with one physical object. Attributes added to a class help to describe the
object further, likelengthandheightof a bridge.

Relationships also are defined in IFC (in data). For instance, alight bulb is operated
by aswitch. Relationships are important in defining object behaviour in ways that
mimic the behaviour of the real world artifacts.

To provide more useful and controlled access to the objects, interfaces are defined.
For each useful viewpoint, an interface is provided. For instance, from the
architectural point of view , the shape and location should be accessible. And from
the cost viewpoint, information about the costs, maintenance frequency, etc. is
useful.

IFC is quite usable, but - as is the case with STEP - the effort and costs of using IFC
software seem too large for the small companies, because of the same reasons.

2.2.3. Electronic Data Interchange (EDI)
EDI (Electronic Data Interchange) is the structured exchange of data between

26

Chapter 2. Current state of communication in the building and construction industry

applications in different companies[Raman, 1999]. The data is transmitted using
pre-defined codes in one big unreadable string (that is, not readable by humans). It
is used by many of the largest companies to link to their suppliers, replacing paper
work orders, documents, confirmations, etc. By allowing computers to talk to each
other without human intervention, the communication rolls along with fewer errors
and human mistakes.Garbage in, garbage outcan be prevented in this way.

Communication between computers needs to be done in codes, at least that’s the
EDI viewpoint. In EDI the standard set of codes (provided by EDIFACT, Electronic
Data Interchange For Administration, Commerce and Trade) is used for the
common, generic usage. A lot of companies have made their own code tables,
extending EDIFACT, to suit their specific needs. Since both communicating sides
need to understand what is communicated, openness about the product data is
needed. Many times so-called EAN (European Article Number) numbers are used
when indicating products. These EAN numbers are the numbers used on barcodes.

The current practice in EDI shows that it is mostly used by big companies who
prescribe their EDI messaging to their suppliers. Because EDI has to be integrated
pretty well with the background inventory system and similar systems, this excludes
(again) the many small businesses. Only if a lot of them get together and come up
with a common system, it is feasible.

2.2.4. Use of XML within IFC, EDI and STEP
All these initiatives are now trying to map their systems into xml vocabularies, but
using the same system with a new XML overcoat will not change thesystem itself,
though it may make it more accessible. The system itself, however, is not available
to facilitate cheap and easy access to information.

2.3. Conclusion
Three major existing solutions are available. Due to it’s specific nature (fragmented,
low budget, many relationships), the building and construction industry isn’t using
any of these solutions. So there is no industry-wide standard for the building and

27

Chapter 2. Current state of communication in the building and construction industry

construction industry and none of the three existing solutions comes close to being
that industry-wide standard.

The first conclusion is that the building and construction industry lags behind when
compared with other industries. The second conclusion is that a simple, cheap
electronic solution is needed. The third is that a mapping of languages and concepts
onto each other is needed.

28

Chapter 3. The goal of this research
project

"If it moves, salute it. If it
doesn’t move, pick it up. If you
can’t pick it up, paint it" - U.S.
military slogan

The purpose of this chapter is to serve as a guideline for the rest of the document,
showing the direction the research has taken.

This chapter starts of with showing possible improvements, followed by two
examples. It ends with a formal goal description for this research project.

3.1. Suggestions for improvement
In the previous chapter, it has been shown that the building and construction
industry lags behind when compared with many other industries regarding
electronic communication. This can and must be remedied, as it is a known fact in
this industry that the lack of good communication is estimated to raise the costs of
building up to 100% when compared to an ideal case.

A second field in which improvement has to be made is internationalisation.
Especially in Europe, the industry is becoming more and more internationally
oriented. Major projects have to be offered by tendering1 to all interested parties in
Europe. Suppliers are increasingly starting to operate internationally. At the same

1. Tendering means tosubmita project proposal to a number of contractors. All major construction
works have to be "tendered" Europe-wide to all interested constructors. They then are allowed to
acceptthe tender and to present their bid (the amount of money) for which they are prepared to take
on the project.

29

Chapter 3. The goal of this research project

time, national languages, classifications and different legislations still hamper this
trend.

The cost of connectivity has decreased the last few years through the rapid growth
of the Internet and intranets. This opens up opportunities for an increase in both the
quantity and the quality of communication, but the uptake till now has been
somewhat disappointing. As an illustration, in the Netherlands, STABU (a Dutch
organisation which builds an information system covering the entire building
process) is trying hard to get all the building companies connected to the Internet
before the end of the year 2000, as half of the companies doesn’t yet have Internet
access.

3.2. Possible advantages
An increasingly effective communication paves the way for severe reductions of lost
time, less re-doing of work because of miscommunication, a much more effective
and up-to-date planning, etc. A few examples might illustrate this more clearly:

• A cement truck is caught in a traffic jam and will be unable to deliver the cement
before it has hardened. This causes the building crane to have nothing to do for
three hours, which it has to catch up with later. Since the crane is on the critical
path of the project, the entire project suffers a three hour delay. If the information
about the delay had been available immediatelyand if the project planning had
been easily accessible and adaptable, the crane might have gotten other work to
do in the three hour time frame. Yes, a mobile phone could have been used to
contact the lead contractor, but you still need a good, readily available and
flexible project planning to be able to re-schedule on such a short noticeandget
the information to the right persons in time.

• Walking around on the building site, a supervisor notices an upcoming lack of
roof tiles and so he grabs his PalmPilot, looks at the information about the roof,
selects the list of tile elements, selects the right one and wirelessly orders another
pallet of those tiles through the company ordering system. The company truck
delivers them at the end of the morning, just before the current stock runs out.

• Many big projects are international projects, with the central office and
planning/designing staff in one country and the actual working site in another

30

Chapter 3. The goal of this research project

country. Once a supervisor finds a problem in the design and needs to have it
redesigned, he normally has to make a phone-call to the central office, manage to
contact the right person in charge, explain to him the exact problemand the exact
part of the site that has the problem. Once all that has been made clear, the design
has to be changed. The changed design is then printed out andmailedby post to
the site, taking at least a day. Had the project information been available over the
internet, the supervisor could have clicked on the specific part in a three
dimensional view of the project, typed in his comments and send it off. This
mechanism at least ties the correct information to the right part. After the design
has been changed, the changes are automatically available at the site, because the
central information has been made available over the internet.

• A certain piece of equipment has broken and you need a replacement meeting
the original design criteria. It should not be larger, it should not weigh more and
it should not use more energy. You contact a search engine on the internet which
you feed with the design criteria that have to be met and it searches the various
supplier’s catalogs that are known to that search engine for parts meeting the
criteria. It then visualises a list of possible replacements with their price-tag,
possible delivery dates and additional characteristics and you can choose the item
best fitting your schedule and your wallet.

31

Chapter 3. The goal of this research project

Figure 3-1. PalmPilot with project management software

3.3. Description of the goal

3.3.1. Discussion of the actual need
As said before, the building and construction industry needs to increase it’s capacity
to use communication and to provide information. This will lead to lower costs and
better constructions. It has to be very affordable and easy to use, or the majority of
small companies will not even bother to consider using new communication
technology. So the Internet (with it’s cheap and easy access) seems to be the best
candidate for the position of communication medium. But the medium alone is not
enough, a means to communicate the message is also needed, which in turn also has

32

Chapter 3. The goal of this research project

to be affordable and easy. Simple HTML and webpages are not enough, HTML is
only markup (how it looks like) and there is not a drop of meaning ("this is a door").
We can argue that XML will fulfil the need for meaningful communication.

3.3.2. Short goal description
The subject of this research is whether XML can be used to provide a common set
of notions (a vocabulary) for the building and construction industry so that
meaningfulexchange of information by means of the Internet can become possible.

3.3.3. The objectives of this research
To restrict the scope of research, I compiled the following three objectives. They are
guided partly by my role in the eConstruct project, (investigating XML and related
technologies) and by the need to provide a prototype as a proof-of-concept.

• Investigating the state of the art of XML and related technologies, as well as
related vocabularies and related developments like EDI (Electronic Data
Interchange) and PDT (Product Data Technology). The Delft University of
Technology had to investigate this for the eConstruct project. This investigation
had to result in a public document outlining a ’baseline’ for eConstruct. The
content ofChapter 4, Chapter 5andAppendix Ahas partly been used in
eConstruct’s first public document (eConstruct’s deliverable D101, see
www.econstruct.org).

• The design and implementation of a vocabulary, separate from eConstruct’s
work at making eConstruct’s vocabulary (named bcXML, Building and
Construction XML). My task is to make a simple prototype vocabulary, allowing
the mapping of one language into another. Required input was the LexiCon
meta-model (Section 5.3). The model has to deal with prefab concrete elements,
a field eConstruct decided to concentrate upon for the time being, mostly because
the Greek partner in the project is a supplier of prefab concrete elements.

• Testing of the vocabulary by means of a simple application. A vocabulary by
itself is not enough to prove that the concept can work. A prototype has to be
designed in order to test it. eConstruct concentrates it’s effort at first on the

33

Chapter 3. The goal of this research project

buying/selling phase, because that is a regular, known form of e-commerce and it
will be relatively easy to gain widespread acceptance of that part of eConstruct’s
functionality (thereby paving the way for usage of eConstruct’s bcXML for other
purposes). To preserve the link with eConstruct, the prototype will concentrate on
the buying and selling phase also.

34

II. The building stones: XML
and other initiatives

Table of Contents
4. Introduction on communicating with a vocabulary written in XML37

5. Initiatives which influenced ceXML...43

35

Chapter 3. The goal of this research project

36

Chapter 4. Introduction on
communicating with a vocabulary
written in XML

"Apathy: If We Don’t Take Care
of the Customer, Maybe They’ll
Stop Bugging Us" -
de-motivational poster

XML is a major building stone for this research project and therefore deserves a
chapter of it’s own.

The first section sums up the advantages of the Internet for communication. A
deficit of the current Internet is the lack of information aboutwhat is communicated.
In the second section, XML (eXtendible Markup Language) is introduced as a
means to communicate something and at the same time including information about
what is communicated. This means that computers will be able to "talk" to each
other meaningfully. The third section describes how to create a vocabulary enabling
communication.Appendix Acontains a much more detailed explanation of XML
and related technologies, skipped in this chapter to keep it compact.

4.1. Internet technology as a possible new
solution

The Internet is a technology that fulfils much of the need for a usable
communication medium:

• Dirt cheap. Simple modem dialup service for small companies. The big ones
(should) already have a decent connection for current Internet usages.

37

Chapter 4. Introduction on communicating with a vocabulary written in XML

• Usability. Many people are familiar with surfing the Internet. If much of the
building and construction information can be made available through Internet
pages, the information will be usable by virtually everybody.

• Platform and implementation independence. When care is taken to adhere to the
World Wide Web Consortium (W3C) standards, the client’s computer, operating
system and browser won’t make a difference. Be it a small browser on PalmOS or
Mozilla on one of the company’s Sun workstations.

There is, however, one problem: the way the Internetpages currently are made. The
only information now contained within the pages is the actual text and images and
information on how to display it. This means that a human canreada page and is
able to determine that the third paragraph is about a certain type of bricks that can
be bought. But no computer will be able to determine which words distinguish
product names, which addresses, etc. Currently, it is all about presentation of
information for reading by the human eye.

What is needed is electronic communication along the lines of EDI (Electronic Data
Interchange,Section 2.2.3), exchanging information (almost) without human
intervention, automating away the parts where human attention is not needed.

4.2. General working of XML
"Consider the modern database: sleek, efficient and able to retrieve records in the
blink of an eye. Data representation, management and storage have risen to heights
we dared not dream of only 10 years ago. But ironically, despite these
achievements, the hippest, most cutting-edge data management technology today is
(drumroll please ...) delimited text." [infoworld.com]

XML, eXtendible Markup Language, is the most cutting edge data management
technology. It also is just a way of dealing with text files. You start with the
information you want to send to somebody else, like this:

List of items

roof tiles 450 red rooster
wooden planks 20 5x20 cm

38

Chapter 4. Introduction on communicating with a vocabulary written in XML

Example 4-1. XML example - The plain information without any indication
about what it really is

The next stage is to "tag" everything in above message, that is, you put a nametag
on it. In XML this is done with <nametag>information you want to tag with that
nametag</nametag>. So the nametag is enclosed in "<" and ">" signs to form the
opening tag, followed by the information and it is closed with a closing tag. The
closing tag is the same as the opening tag, only with a "/" before the nametag.
Example 4-2shows how this works out if we changeExample 4-1into an XML
format:

<orderform>
<description>List of items</description>
<item>
<name>roof tiles</name>
<quantity>450</quantity>
<type>red rooster</type>
</item>
<item>
<name>wooden planks</name>
<quantity>20</quantity>
<type>5x20 cm</type>
</item>
</orderform>

Example 4-2. XML example - The same information, now tagged to make an
xml file out of it.

This information can be fed into the company’s internal ordering system. For
example, by using a PalmPilot to enter the data into an application while walking on
the building site. Once a (wireless) connection is made via the Internet to the
company’s office, the information is send over in XML format and at the office, the
ordering system reads the XML file and acts upon it. The interesting thing is that

39

Chapter 4. Introduction on communicating with a vocabulary written in XML

the receiving application now knows whether it is an orderform, a damage report or
an timesheet. Also it can distinguish between a typenumberand a quantity.

Sending over information is nothing special. Sending over data in some pre-agreed
format is nothing special. The major advantage of XML is that it is a standard. It is
a standard way of tagging information withmeaning. Almost every computer
programming language in existence has got one or more modules to read an XML
file, to write one, to change one, etc. On the consumer side, the only thing you
notice is an increase in possibilities because it is much easier to (quickly) program
additional functionality.

4.3. Making an XML vocabulary
In Section 4.2, information was tagged with nametags. In order for
computersystems to understand those tags, it is necessary to define beforehand
which tags are allowed. This enables computersystems to decide which action to
take when confronted with an <orderform> tag (namely, feeding it to the order
processing part). In an analogy to human speech, the specification of the language is
called a vocabulary. In XML terms, this vocabulary is called anXML schemaor an
Document Type Definition(DTD).

The language you speak electronically is both enabled and restrained by the
vocabulary. A big vocabulary with very loose grammar results in rich expressive
possibilities, but on the downside, it results in hard-to-understand messages. The
opposite is true also. A small vocabulary with strict rules allows you to
communicate only a limited scope of messages, but the messages are very clear to
understand. How to proceed? Designing a vocabulary is a difficult task. That is why
the upcomingChapter 5looks at three existing initiatives for good current practice
in designing vocabularies.

4.4. Conclusion
The Internet is a good medium for communication. Access is cheap and available to
all, generic tools (like browsers) are freely available, almost everybody can use it.
XML is an Internet technology that provides the possibility to use a vocabulary to

40

Chapter 4. Introduction on communicating with a vocabulary written in XML

tag information with nametags, giving meaning to the text that is communicated. A
vocabulary has to be designed, which is a hard task. The next chapter therefore
looks at three examples of how to accomplish that.

41

Chapter 4. Introduction on communicating with a vocabulary written in XML

42

Chapter 5. Initiatives which influenced
ceXML

People are stupid and will
believe anything because either
they want to believe it or are
afraid it might be true -
wizard’s first rule

The purpose of this chapter is to provide a basis for the design and implementation
described inChapter 6andChapter 7. My design and implementation are
influenced mainly by three initiatives, who will serve as the underlying basis.

This chapter introduces ebXML (electronic business XML), GEN (Global
Engineering Networking) and the LexiCon (a set of programs made by STABU).
These are initiatives which provide useful ideas on how to design and use a
vocabulary. Each initiative is introduced. Some interesting aspects will be discussed
at a deeper level, and at the end of each part the influence on ceXML is summed up.
The chapter concludes with a summary of all the influences distilled from the
initiatives, to serve as an input toChapter 6.

5.1. Electronic Business XML (ebXML)

ebXML (Electronic Business XML) was started by the United Nations, who earlier
developed EDI. It is an initiative in which many important and acknowledged
global players co-operate. This results in work of high quality, fuelled by extensive
experience. In this section, the interesting parts of ebXML are introduced, resulting
in a list of ideas that will be adopted in ceXML.

43

Chapter 5. Initiatives which influenced ceXML

5.1.1. Introduction on ebXML
The mission of ebXML isto provide an open XML-based infrastructure enabling
the global use of electronic business information in an interoperable, secure and
consistent manner by all parties[www.ebxml.org]. The project was jointly initiated
by the UN (United Nations) and OASIS (Organisation for the Advancement of
Structured Information Standards) and aims to produce a framework for sending
and receiving electronic business information within an 18 month time frame (the
planned end date is mid 2001). This framework includes XML standards, protocols
and software.

5.1.2. ebXML’s context mechanism
The collective experience available in ebXML is huge. Most of the large companies
that either work with or provide frameworks for electronic business are present. In
current systems, two ways of dealing with information form the mainstay of
solutions.

• You make a model that allows you to describe in a precise way all information
that is needed for one specific industry. This has the disadvantage that this system
will not work well the moment you have to exchange information with another
industry. No industry stands on it’s own: a steel mill needs to order pencils and
needs to deal with an accounting system for payments. Both of these fields will
not be covered by the industry specific information model (which deals with
steel).

• You make a generic model that is applicable to a large number of industries in
order to provide a solve-all solution. But this model will not be able to capture
the level of detail needed to exchange information regarding e.g. the steel
fabrication process.

ebXML acknowledges the fact that both the industry-specific initiatives and the
solve-all generic approaches do not work. Initial research pointed out the need for a
different approach. As a solution to above problems, it was decided to work with
the concept ofcontexts, explained below.

A context might be a geographical one (USA, Europe, Germany), it might indicate
an industry (insurance, building, automobile), etc. Using the contexts, a basic set of

44

Chapter 5. Initiatives which influenced ceXML

core components provided by ebXML can be extended to facilitate speaking about
e.g. a [building project] in [Europe] using the [Dutch] classification system. This
mechanism allows for a notion of inheritance. A core component can be viewed as a
tag (like<address>), but it is more a concept of it’s own. It can be used (when
properly extended through the context mechanism) to hold street-city-state-type
addresses in the US in one context internet addresses in another context, etcetera.
Phrased in technical terms: the context mechanism modifies and extends an initial
small, very generic model1 in such a way that it is suited for holding information in
that specific context.

For example, ebXML has given one of it’s core components the nameparty . Party
as in "this contractor is one of the parties involved in building this bridge"). The tag
party always contains information on the identity of the party and how to contact
the party. This is achieved through aname and anaddress tag. For some
situations, this might be enough, butparty can be extended to include tags like
street andstate in the USA, while in the Canadian contextprovince will be
used instead ofstate . As a side note, the context is not supposed to be
hierarchical, which in this case means that first selecting the contextUSAand after
that insuranceshould be the same as first selectinginsuranceand thenUSA, both
should mean "I’m talking about insurance in the USA setting".

Work is underway to come up with an XML format specifying these context rules.
A rule consists of actions to be taken to expand a given vocabulary to contain the
tags needed to talk in the context the rule is valid for. Normally, the starting
vocabulary will be ebXML’s core component vocabulary. This vocabulary contains
basic tags likeaddress andcontract . An early try-out (showed on a recent
ebXML conference) demonstrated this extension of the core component vocabulary
with additional terms.

Because XML Schema, the language that will be used in the near future to create a
vocabulary in XML, is itself specified in an XML format, this process could well be
done using XSL/T (seeSection A.2), an XML technology to change XML files. The
advantage is that it can be done completely with XML technology, making it usable
in a lot of circumstances.

This mechanism is powerful, but it means that at the same time the resulting

1. ... or XML schema, or DTD, depending on the way you look at the problem.

45

Chapter 5. Initiatives which influenced ceXML

schemas might not be stable enough. Something that is generated isnot something
that is set in stone. But if the mechanism is well-defined and predictable, this
disadvantage will not be a problem. For ceXML (the vocabulary which is the
subject of my research), the context mechanism seems to be the right choice.
Having to accommodate different languages, classification systems and uses, as
described inChapter 3, flexibility might be the right approach.

Because no ambiguity is allowed in any core component tag, ebXML provides strict
definitions for every element they create (at the moment about 30).

5.1.3. Semantic level
Semanticsis basically the "meaning"-part that is associated with language.
Grammar is the syntax, the structure of a language. Semantics is what ties the word
treeto the big brown piece of wood with green leaves (or needles).

ebXML leaves the semantics mostly to industry groups. With the semantics, I mean
the tags that are needed to specify, togive words to, items defined in the industry. To
rephrase that, semantics are the words - the words that are needed to communicate
meaningfullyabout the things that are relevant to an industry.

In the ebXML system, the semantics that are needed are provided from two sides:

• ebXML provides the few tags that are needed by everybody: the core
components. They are the ones used for very generic tasks, like identifying the
two trading parties, their addresses, contract, signature etc.

• Specific industries must take care of the task of creating a set of tags needed to
communicate about things specific to their industry. For the building and
construction industry, eConstruct should provide these tags.

You can draw an analogy to the development of a normal (human) language. Here
also you have a basic set of words, sayings and concepts. Every industry or group
adds his own semantics to the pool of words. From the King James Version
bible-speak in some churches to the unintelligible ramblings of computer
enthusiasts and the technical phrases of a civil engineer, every group has
group-specific semantics.

46

Chapter 5. Initiatives which influenced ceXML

To make it practical for eConstruct: eConstruct should create the message while
ebXML takes care of the envelope and the transport. ebXML creates the semantics
needed to talk about where to send the message and what to do with it, eConstruct
has to create the semantics needed to talk about the needed strength for a
hollow-core slab with a span of 5 meters.

eConstruct has to watch ebXML’s development carefully in order to be able to
integrate when the specifications are stable. Arguably, ceXML cannot integrate at
the moment with something that does not exist. It is good, however, to remain
focused on the fact that the trading and communication stuff will be provided for by
initiatives like ebXML. ceXML (and it’s big brother bcXML) can concentrate on
the specific building and constructionsemantics.

5.1.4. Business processes
ebXML also has a technology calledbusiness processesthat defines whatis to be
done with the data and whatcanbe done with the data. By strictly specifying
business processes, also those processes are subject to automation. As an example,
you can specify what has to be done to get permission to build a house. If that is
known, several steps can be automated, making it easier to deal with them. There
are specific issues with the building and construction industry regarding the way a
conversation between two possible partners rolls along, which eConstruct should
integrate into the business processes framework. For instead of relying on
purpose-build one-time solutions, it is good to follow ebXML’s example: devise a
mechanism for the dealing with business processes.

Again, this is not directly feasible for ceXML because ebXML is not finished yet,
but the idea is sound. Therefore also in ceXML, transactions will be driven by data,
not by programming logic.

5.1.5. Influence on ceXML
As indicated earlier, using ebXML (in the form of a finished product) is not possible
because it is not finished yet. Much work that is done by ebXML, however, seems
extremely useful. Therefore the following parts are chosen for inclusion in the
ceXML prototype.

47

Chapter 5. Initiatives which influenced ceXML

• The context mechanism. Using contexts to adapt the vocabulary to that context.

• The distinction between general addressing-like items (the core components) and
the building/construction specific items.

• The use of specified business processes to ease the processing of the XML
requests and answers send back and forth.

5.2. Global Engineering Networking (GEN)

The GEN project (Global Engineering Networking) is an effort at creating a
network where engineers can get the information they need and where suppliers can
provide the information needed by engineers. This section will describe GEN, show
the architecture of GEN and the usage. At the end, the specific influence GEN has
on ceXML is mentioned.

5.2.1. Introduction on GEN
In engineering enterprises, close co-operation with other firms is needed. One firm
cannot hold all knowledge, technologies, resources, products, etc. GEN’s purpose is
to create avirtual enterprise, tying multiple suppliers, vendors, resellers, etcetera
together into one bigvirtual enterprise. Currently, easy exchange of the needed
information is hard to achieve. Different sources (catalogues, CD’s, Internet) have
to be searched to get to the needed information.

GEN wants to remedy this situation and has compiled the following list of
requirements [Radeke, 1998] for the architecture:

• Various sources of information should be accessible in an uniform way.

• Standardised classifications should be used to access the information.

• Extension of classifications should be possible to allow for customisation to a
company’s needs.

48

Chapter 5. Initiatives which influenced ceXML

• Information must be accessible, not only in the ’correct’ classified place, but also
when it has a strong relationship with information elsewhere in a classification
tree.

• Reuse of existing data, whatever the source.

• Companies should be able to maintain their data on their own, due to political,
security and consistency reasons.

5.2.2. Architecture of GEN
Normal systems for electronic commerce are working with a purpose-build local
system. GEN uses existing classifications to store information and allows the
distribution of the information amongst a number of sites.Figure 5-1depicts the
usage of GEN as a method of co-operation on which solutions can be build and to
which existing systems can connect.The channel of communication is the Internet.
Each company’s internal system is connected to that channel of communication by
means of a so-calledGEN co-operation layer. This co-operation layer uses it’s own
meta data (basically: it uses it’s own vocabulary) to communicate with the other
GEN sites.

Figure 5-1. Logical architecture of GEN according to [Radeke, 1998]

49

Chapter 5. Initiatives which influenced ceXML

The GENial project (Global Engineering Networking, Intelligent Access Libraries)
is a project that had to provide an implementation of GEN. So, a reference
implementation of a GEN infrastructure has been made. GENial can be used in the
following three ways:

• Company-specific, as an added service for their website.

• Across multiple suppliers (e.g. of an supplier association)

• For an entire domain, all along the entire supply chain.

The architecture of GENial uses an two-step method to get useful data from the
suppliers to the users. GEN uses XML as an intermediate exchange format. Data is
first extracted from the suppliers data source (whatever that may be) and converted
to the GENial XML format. Next, the data is ready for integration into the GENial
infrastructure (whatever the implementation). The same route can be followed on
the way back to the end user (Figure 5-2).

Figure 5-2. Handling of data in GENial

5.2.3. Usage of GEN
The interface presented to the user in GENial (Figure 5-3) depicts the way GENial
is to be used. As said, GENial is a reference implementation of a GEN

50

Chapter 5. Initiatives which influenced ceXML

infrastructure. In the upper left part, the user selects a classification system of his
choice. A tree-like representation of that classification is available in the lower left
part. Once the user has made his choice (in this case, the elementdoor in the
lexiconclassification), the choice appears in the right part of the screen with a list of
all attributes and a means to specify restrictions for those attributes. So,width can
be set to be1.2 manddoor type to sliding. Next, the search button can be pressed
and all doors meeting those criteria that are available in the GENial system are
listed.

Figure 5-3. The GENial interface

5.2.4. Influence of GEN on ceXML
The use of XML is arguably effective as an intermediate format between the

51

Chapter 5. Initiatives which influenced ceXML

original data and the infrastructure of the actual content management and the
content providing layer. The need to make this intermediate format easily usable
must also be met by ceXML. The question remains whether one xml format will be
sufficient forboththe exchange with the original dataand for the actual sending of
information. Are there different needs for both cases and, thus, should the format be
different?

Another influence is the way user interaction is done. Using a classification and
known attributes to select the needed information seems like the most
straightforward and simple way of handling the interaction with the user.

5.3. LexiCon

The LexiCon set of programs2 and way of working is one of the main building
blocks of the eConstruct project. The LexiCon will provide the means to deal with
multiple classifications and languages, making it possible toidentifyobjects
regardless of the language or classification system that is used. It is called LexiCon
(with a capital C in the middle) to make clear that it is a specific product and
thereby to distinguish it from the generic termlexicon.

5.3.1. Inner workings of LexiCon
The LexiCon consists basically of three parts:

The LexiCon Explorer

A computer program used to view, create and edit vocabularies (lexicons)
according to the LexiCon meta-model.

2. The LexiCon is made by STABU, a Dutch organisation which (amongst other tasks) builds a
information system covering the entire building process.

52

Chapter 5. Initiatives which influenced ceXML

The LexiCon SpecExplorer

A program to view, create and edit information about a specific project or
object in the ’language’ defined by a specific vocabulary (a lexicon created by
above LexiCon tool).

The LexiCon meta-model

This meta-model specifies the rules to which an implementation or a message
must comply to be compatible with the other parts of LexiCon. The LexiCon
meta-model defines what can be said and expressed using the LexiCon system3.

To sum it all up, themeta-modelspecifies the rules by which one can create a
vocabulary (a lexicon) in theLexicon Tool. That vocabulary is used by theLexiCon
SpecExplorerto describe real-world objects or projects (Figure 5-4).

Figure 5-4. The structure of LexiCon

3. When seen this way, the information that is put into the LexiCon system is basically a model. I
present it in this way because I use the information in the LexiCon system as a vocabulary. This
vocabulary serves as a model to which the communication in my system complies. Thus, the level
above that vocabulary is - from this viewpoint - a meta-model.

53

Chapter 5. Initiatives which influenced ceXML

5.3.2. Underlying model
Figure 5-5shows the meta-model of the LexiCon, simplified for clarity. This
meta-model will be explained more fully inSection 6.5.3and is the basis of the
ceXML model.

Figure 5-5. UML diagram of the LexiCon meta-model

5.3.3. Functional unit and technical solution
An important concept for the LexiCon is the FU/TS concept (meaning Functional
Unit/Technical Solution). The idea comes from the General AEC4 Reference Model
(GARM) by Wim Gielingh. That boils down to adivide and conquer-like way of
dealing with an object description. On one side one has a functional unit"something
to stand on"and on the other side you have the technical solution"a floor supported
by beams". The attributes and requirements of the functional concept are to be met

4. Architecture, Engineering and Construction

54

Chapter 5. Initiatives which influenced ceXML

by the technical solution, so that the requirements for the total solution are
appropriately propagated to the technical subparts.

Figure 5-6. Explanation functional unit and technical solution ("the
hamburger model") [W. Gielingh, 1988]

5.3.4. Influence on ceXML
One of the main points to be covered in this graduation project is testing the
exchange of building/construction data with the LexiCon. The kernel of the
LexiCon is the meta-model it uses. Within this meta-model, the LexiCon can
describe items in multiple languages and it can link items to multiple classifications.
These possibilities make it a needed ingredient of eConstruct and, likewise, this
LexiCon meta-model will serve as a design guideline in the creation of a ceXML
vocabulary. I call it adesign guideline(I will not use the exact meta-model).
Another reason for this is that I will implement the meta-model in XML5, which
will bring about some changes to the meta-model.

5. "Implementing the meta-model in XML" in this case means that I write a DTD according to the
information in the meta-model. Any XML file complying to that DTD can be said to comply to the
meta-model.

55

Chapter 5. Initiatives which influenced ceXML

5.4. Conclusions
The conclusions from this chapter are best summed up by listing the most important
influences on ceXML compiled from the previous three sections:

• Clearly ebXML has got the appropriate context mechanism, the distinction
between generic and specific information and the idea to use specified business
processes as a tool to handle all the data.

• GEN provides ideas for a good user interface and provokes thoughts on how to
exchange information with existing systems.

• LexiCon’s influence is the way the vocabulary should look like.

56

III. Design and
implementation of the

vocabulary
Table of Contents

6. Design of the vocabulary...59

7. Prototype implementation...79

57

Chapter 5. Initiatives which influenced ceXML

58

Chapter 6. Design of the vocabulary

"A simple, clear purpose and
simple, clear principles give
rise to complex and intelligent
behaviour. Complex rules and
regulations give rise to simple
and stupid behaviour." - Dee
Hock"

This chapter describes the underlying design of the vocabulary: the models. Each
model is depicted using an Unified Modelling Language (UML) diagram. For those
unknown to this graphical notation, please readAppendix Cfor a quick
introduction.

The chapter starts with listing the requirements for the vocabulary and the
prototype. Next, the structure of the entire vocabulary is outlined, followed by the
three parts it consists of.

6.1. Detailed requirements specification

6.1.1. Goals
The vocabulary (Chapter 6) and the prototype (Chapter 7) have two goals:

Proof-of-concept:

The concept consists of the most interesting parts of ebXML, GEN and the
LexiCon. These interesting parts have been mentioned in last chapter’s
conclusions (seeSection 5.4). The prototype and the vocabulary have toprove
that this concept is usable.

59

Chapter 6. Design of the vocabulary

Ease of understanding

The prototype and vocabulary serve to illustrate the working of the concept.
Therefore it should be easy to understand, also for people without much
experience in civil engineering informatics.

6.1.2. Requirements

The following requirements serve as a guideline in designing the vocabulary and the
prototype.

It should be simple:

In order to make the concept clear, the vocabulary and prototype have to be
simple. Stated bluntly: a proof-of-concept is no proof if the proof is not
understood.

There should be separate generic tags and (industry) specific tags:

ebXML provides a basic set of tags (theCore Components) containing generic
data like names and addresses. Industry specific tags are added to these core
components to get the full range of tags needed to communicate. Divide and
conquer. (Section 5.1.3).

It should use the LexiCon meta-model:

The LexiCon meta-model provides the functionality needed to communicate
in multiple languages, which is very important for eConstruct. As one of the
main points of this graduation project is testing this multi-lingual exchange of
building and construction data, the LexiCon meta-model is mandatory.

It should apply a context mechanism:

The vocabulary must use the context mechanism as used in ebXML. With this
mechanism, a core set of tags is modified according to a certain context
(Section 5.1.2). After the modification, the core set has been enhanced with
tags that are needed to communicate in that context.

60

Chapter 6. Design of the vocabulary

It should use Business Processes:

ebXML uses specified Business Processes to aid in the processing of requests
and answers. A message should not have to include more information besides
just the name of the business process in effect and the current step in that
business process. The system should be able to process the message based
solely upon that information.

It should use an interface with both a tree view and a list of characteristics:

The interface of GEN (Figure 5-3) will be used by ceXML. Using a tree-like
representation of a classification to select the needed item is the most
straightforward and simple way of handling the interaction with the user. A list
of characteristics of the selected item must be displayed next to the tree-view.

6.2. Overview of the structure
Figure 6-1shows the structure and the parts of which the vocabulary exists. First
you need amessage(Section 6.5) containing the actual civil engineering
information you want to communicate. To facilitate the various operations that have
to be carried out on the message (like actually sending it), anenvelope(Section 6.4)
is placed around it containing generic informationaboutthe message contained
within. To aid in the processing, an external list ofBusiness Processes(Section 6.3)
is maintained, containing information on what to do upon arrival of a message,
information that tells the computer system how to process the message. The
Business Process info is placed within the envelope.

61

Chapter 6. Design of the vocabulary

Figure 6-1. Overview of the relations between the Business Process, the
message and the envelope vocabulary

6.3. Business Processes model
By specifying Business Processes in a strict way, computers can be told how to roll
along a transaction from begin to end. SeeFigure 6-2for an example: a contractor
wants to know if a supplier can supply him with certain parts, he receives back the
items the supplier has to offer, orders a certain part and receives back a confirmation
of the order. The same business process is used in case a supervisor notices a
shortage of certain parts on the building sites and orders an additional shipment
from the company warehouse (the second example mentioned inSection 3.2).
Figure 6-3shows a second possible business process, this time a supervisor needing
information about a specific part of a project, possibly to change the completion
percentage recorded for that part in the company records from 60% to 100%. Or to
find out which subcontractor installed the faulty window in order to send him a
repair order.

62

Chapter 6. Design of the vocabulary

Figure 6-2. Business Process Use Case 1

Figure 6-3. Business Process Use Case 2

63

Chapter 6. Design of the vocabulary

To get basic functionality, the following two items are needed:

• A single step of a business process, likeupdate infoor select specific part.

• An entire business process, consisting of a number of steps. Both Use Cases
(Figure 6-2andFigure 6-3) are considered one business process.

The complete model is shown inFigure 6-4.

Figure 6-4. Business process model

6.4. The envelope model
The envelope model should contain the information needed to complete whatever
the user wants to accomplish with the message. This is the generic information, as
opposed to the actual message itself, which is the subject of the next section
(Section 6.5). The termenvelopewas chosen because of it’s clarity when compared
with generic vocabulary.

First and foremost, you need an identification of the parties1 on both sides.
Secondly, you need a place to store the info on business processes and a place to

1. Party in this case means an individual or a company taking part in the communication. It is the term
used within the ebXML project for the communicating partners on both the receiving and the
sending side.

64

Chapter 6. Design of the vocabulary

store the message. For a proof-of-concept,Figure 6-5provides a model that
contains enough information to be usable in simple applications.

Figure 6-5. Model of the envelope vocabulary

6.5. The message model

The message model is called that way to distinguish it from the envelope model.
The message model contains the actual building and construction data. For actually
sending over data, a more simplified version of the model (a "view") is used

This section starts with a discussion outlining the difference between a model and a
view. This is done first in order to place the message model in the right perspective.
The section also describes whybotha model and a view are needed to describe the
actual message. Next, both the model and the view are presented.

65

Chapter 6. Design of the vocabulary

6.5.1. Difference between a model and a view
A model, as the two previous sections showed,is a way to describe something in a
standardised manner. A Business Process consists of one or more Business Process
step s, as you can see inFigure 6-4.

A view is best described by saying that it is aview on a model. Let’s explain it by
drawing an analogy with databases. Databases are an application area where views
are used a lot. An entire database is quite complicated and consists of many items2 .
Many items only serve a database-internal function and aren’t meant to be seen by
the users. A view in database technology terms means a selection of the items,
needed for a specific purpose. A user of that view can do exactly what he needs to
do, without being bothered by the underlying complexity. A view (now in the
context of this document!) is a simplification of the actual model which can be
exchanged losslessly with the model3.

6.5.2. The need for both a model and a view
Reality is complex. Civil engineering works are complex. In order to describe them
accurately, the model should be able to accommodate the complexity. Stated
differently, the model should be able to describe the reality accurately. When a
model only allows you to talk aboutwalls andfloors, you can describe a building.
But you’re already missing the foundation, the windows, etc. Reality in this case is
definitely more complex than the model can accommodate.

2. Itemsis not the technical correct term, it should be fields and tables. I use it to make the document
more understandable. Databases normally consist of multiple normalised tables, which means that
they are stock full of fields that are only there in order to be able to re-assemble the information
stored in those tables. That is why views are so handy, that way the user is not bothered with
UsrGrpID andInternalArticleNumber fields.

3. Lossless exchange between the model and it’s view of course only is possible when the view is used
correctly and therefore only so when there is no possibility for the user to circumvent the specific
constraints put into the software. Or, another possibility, the view contains all information needed
by the model, only arranged in a different and more user friendly way.

66

Chapter 6. Design of the vocabulary

To handle complexity, one of the most important steps is tocategorisereality. This
means to split up reality in multiple categories, e.g. floors, walls, foundation,
services, etcetera. A wall can then be categorised further in concrete wall, wooden
wall, etcetera. There are two ways to accommodate complexity through
categorisation:

• Make acomplexmodel. Model as much specific characteristics of the reality as
feasible, categorising within the model itself.

• Make agenericmodel. Capture the characteristics of the reality, phrasing them in
a limited set of generic terms, leaving the actual categorisation work to one who
uses the model.

For example, the first model would have aloadbearingfunction element, the
second model would havea function with a name of load_bearing .

The requirement (Section 6.1.2) that the model has to be simple excludes the first
(the complex) model. The problem with the second model, however, is that the
generic terms used (which are perfectly well suited to describe reality) are less
usable from a user point of view. As an analogy, a database’s internal structure,
which probably will be the best and most efficient way to represent the information
stored in it, most probably will not correspond to the way the user looks at the
information. In the same way, a generic model does not represent the user’s
viewpoint most of the time. So, a view will be used to accommodate certain specific
uses. The model itself will be used for generic storage and to facilitate exchange.

An additional bonus of using a view is that it constrains the user. This may sound
negative, but by allowing only a limited view on the total model, the amount of
possible errors also is reduced. To illustrate this, look again at the database example.
In his view the user only sees the fields he needs. If he would have access to all
database fields, it would be easy for him to type in a wrong customer_number in the
order database that does not correspond to the intended customer. In a view, he
would have selected a specific customer and the system would have taken care of
filling in the correct customer_number.

As a conclusion, a generic model will be used to describe reality, but for specific
uses, a view will be used to simplify the use of the model.

67

Chapter 6. Design of the vocabulary

6.5.3. The model
The model I use is based on the LexiCon meta-model (Figure 5-5). Below, I will
explain the resulting model. This also serves as an explanation of the original
LexiCon meta-model.

First off, we start with abuiltobject . That is an item which stands for one part of
a civil engineering object. Like, for instance, a wall, a door, a tunnel. Nothing keeps
you from using it to indicate a service, like paint-work (as applied on/for an object).
But since it will most often be used to describe a "touchable" object, I stick with the
naming of the LexiCon. Abuiltobject is the base building block, to which all
other information is connected, like names, characteristics and sub-parts.

Figure 6-6. The message model - 1

Secondly, I add two things. Thebuiltobject on the one side has
characteristics 4 of it’s own and on the other side it serves as a category for
otherbuiltobject s. Thecharacteristic s will be explained later on. The fact
that thebuiltobject serves as a category is because all thebuiltobject s, one
way or another, have to be categorised in categories of builtobjects. Everything
below this category still is a, say, door, but then a more specialised one. A sliding
door, a revolving door, a armoured door. This is central to the LexiCon meta-model
this model is based upon. Allbuiltobject s which serve as a category, together
form a tree-like structure. They are categorised in one big hierarchy according to
specialisation (seeFigure 6-7.

4. In the modelling world,characteristicsis used to indicate the characteristics of a class, of a kind of
object. As soon as the object is a specific object ("that door"), they are normally calledproperties.

68

Chapter 6. Design of the vocabulary

Figure 6-7. Example of a tree structure

So, the specialisation can be used to build a hierarchy ofbuiltobject s, while the
characteristic s are listed separately, they arecharacteristic s of that
specific type ofbuiltobject .

Figure 6-8. The message model - 2

Next, thecharacteristic s are fleshed out. Thebuiltobject can have an
amount , quantification s andfunction s associated with it through it’s
characteristics. Anamount is used to indicate the number ofbuiltobject s. This

69

Chapter 6. Design of the vocabulary

is used when describing that something consists ofamount items ofthis
builtobject .

Quantification is used to describe measurablecharacteristic s of the
builtobject , like weight, length, height.

Function s are used to describe features one desires from or who are associated
with thebuiltobject . For exampleload_bearingor fire_resistance.

Through the subparts-relation, alsobuiltobject s are connected to the
characteristics , this is a means to identify parts which are directly related
(though not in the sense of specialisation!), such as a doorknob on a door or glass in
a window.

Figure 6-9. The message model - 3

Added to this is one new object,unit . Unit is a unit as inmillimetreor pound per
square inch.

70

Chapter 6. Design of the vocabulary

Two relations are added. afunction has an optionalquantification , so the
functionfire-resistancecan be quantified withtime to failure. A quantification

can have anamount (50) and aunit (minutes), for instance. This can be used for a
fire-resistance function which has a TTF (time to failure) of 50 minutes.

Figure 6-10. The message model - 4

Lastly, all objects (exceptcharacteristics andamount) have one or more
names for identification and presentation purposes. Eachname has an attribute
language to indicate the language. This way, multi-linguality is achieved. A door
can both have an English namedoor and a Dutch namedeur. It is the same built
object, but it can be identified both in Dutch and in English.

The only elements without aname areamount (which is just a number) and
characteristics (which only serves as a container to the elements below it).

71

Chapter 6. Design of the vocabulary

Figure 6-11. The message model - 5 (final version)

6.5.4. The view
As indicated before, the model is good for storing a hierarchy and ordering the
different built objects, but for simple uses it is too awkward to use. In order to prove
the concept of views (explained inSection 6.5.2), one simple view is enough. The
two Use Cases can help determine the view. Both Use Cases are repeated inFigure
6-12for convenience.

72

Chapter 6. Design of the vocabulary

Figure 6-12. Both Use Cases together

The left-hand Use Case is mostly about simple parts. The contractor wants 500
rooftiles with a certain performance and 4 concrete beams with a span of 4 meter.
He gets as a response 7 possible types of rooftiles and beams. He orders 500 items
of one type of roof-tile.

The right-hand Use Case first needs an entire project hierarchy to be transmitted,
but after that only single pieces of information are needed.

A useful view in both cases is to have a simple list of items with no hierarchy and
substructures: just a one-dimensional list of single items. This means a very simple
view with no need for much structure. The information that is contained within the
model for one specificbuiltobject (like function) should be available too
within the view. But here lies a possibility for more ease of use. In the model, the
information is represented by items that havenames. In the view, when you select
only a single language, the function-with-a-name duo can be changed into a single
item named after thename of the function . And instead of communicating a
builtobject with a name of roof-tile, you can communicate aroof-tile . In
this way, no information is lost, but the usability has risen considerably. The result
of an example view can be seen inFigure 6-13andFigure 6-14.

73

Chapter 6. Design of the vocabulary

Figure 6-13. Initial version of the example view

<door>
<amount>..</amount>
<height>

<amount>..</amount>
<meter/>

</height>
<fire-resistance>

<time-to-failure>
<amount>..</amount>
<minutes/>

</time-to-failure>
</fire-resistance>
etcetera

</door>

Figure 6-14. Initial version of the example view - XML version

74

Chapter 6. Design of the vocabulary

This can be done even simpler by using attributes, which does away with theunit

andamount items. This results inFigure 6-15andFigure 6-16.

Figure 6-15. Definitive version of the example view

<door amount="..">
<height meter=".."/>
<fire-resistance>

<time-to-failure minutes=".."/>
</fire-resistance>
etcetera

</door>

Figure 6-16. Definitive version of the example view - XML version

75

Chapter 6. Design of the vocabulary

6.6. Selection of elements
A problem that has to be solved is how to select elements. There is a tree of
builtobject s, in which there are names, functions, quantifications, etcetera. They
themselves are stored separately to save time and effort. A certain function will
probably be shared by a number ofbuiltobject s. Also thebuiltobject s
contain otherbuiltobject s. So there has to be some mechanism of pointing
towards other items.

For this, there are two feasible ways:

• Use ID’s to identify items. An ID is an unique number or text that is used to
identify exactly one item.door id="abc123" , for example.

• Use the names associated with the items to identify them. This means that you
identify a specific item by searching for an item of that type with the name
"door", for instance.

The ID mechanism has the advantage of not being bound to a specific language.
Using names to identify items has the disadvantage that there will very probably be
multiple items with the same name. An ID can be used to select exactly one specific
item without any inherent language problems. A language can be trusted, however,
to be logical enough to ensure that two items with the same name are more or less
similar. If a real problem persists, it is necessary to use an alternative word to
describe the item. A large number of conflicts can be found, however, in the naming
of quantifications. Depth can be, for instance, the depth of a lake (a vertical unit of
measurement) or the depth of a window (a horizontal unit of measurement). This
can be solved by using a more descriptive unit, likeconstruction-height(instead of
justheight) to indicate the vertical dimension of a bridge, andclearancefor the
vertical dimension that indicates the room available for ships to pass underneath the
bridge.

The ID mechanism has the disadvantage that you have to be very careful with the
ID’s you give to items. Whatever happens, a door item will still be found by looking
for the item with the name "door". Nothing keeps an ID from changing if there are
no fixed rules for handing out ID’s. Especially when ID’s are automatically
generated by computer systems of various suppliers, there are severe problems.

Programmatically, there is no difference between searching for a item with a certain
name and searching for an item with a certain ID. To avoid adding ID elements to

76

Chapter 6. Design of the vocabulary

the language, I choose to select items by looking at their names5.

5. Not using ID’s is a choice for my prototype, not a choice I would necessarily make for the final
eConstruct system. A well devised ID system, probably using reasonably descriptive text as ID,
gives the system much more freedom regarding the names given to items. In a real-world system
there will not be much enthusiasm for a programmatic restriction on names. But for my prototype,
the name system doesn’t pose any problems and is much easier than having to hand out ID’s to all
itemsand, more important, keeping them in sync.

77

Chapter 6. Design of the vocabulary

78

Chapter 7. Prototype implementation

"The world is like a book that
can be read in two different
ways. We read in it the power of
creation, to create something
out of nothing. And we read in it
the power to destroy, reducing
something to nothing" - Rabbi
Pinchas of Koritz

This chapter’s goal is to implement the vocabulary of the previous chapter. It has to
be a proof-of-concept.

First, the way of implementing is explained. After that, the resulting code and files
are presented in groups, first the generic utilities. Then the vocabulary and views are
made and filled. The filled vocabulary and views are visualised and, finally, used for
a search.

7.1. Implementation method

The goal of this section is to present the programming and the tools used.

7.1.1. Unix style of programming
In order to keep everything simple, I have chosen to follow the so-called UNIX
style of programming. This means that I build a lot of small programs (in this case:
many XSL/T stylesheets) that do only one thing (and do that well). These small
programs are then linked together in various ways to provide the needed

79

Chapter 7. Prototype implementation

functionality. This as opposed to the much-used style of programming which builds
one big does-it-all program.

7.1.2. Programming language and tools
I used four programming languages/tools for the prototype. They were chosen for
their ease of use and their technological appeal.

7.1.2.1. XSL/T

Being the most used and useful technology surrounding XML, this stylesheet
language is used to transform one XML format into another1. By transforming an
XML file multiple times by consecutive stylesheets, quick results can be achieved.
The extensive use that is made of this technology in the XML world makes it
indispensable for this prototype. An explanation of XSL/T is found inSection A.2.

There are many XSL/T stylesheet processors, I chose the Xalan processor from
Apache’s XML project because it is one of the most actively developed processors,
keeping up with even the latest standards and achieving nearly 100% standards
compliance. This turned out to be a good choice, because I did not find a single sign
of strange, non-standard behaviour. Xalan is implemented in Java and therefore has
to be called from a Java program or it has to be executed on the command-line (I
chose the latter).

7.1.2.2. Python

Python is part of the so-called family ofscripting languages. It has an easy and
clear syntax, it allows for quick programming (typical python programs are 10% the
size of comparable C++ or Java programs) and it has a large amount of modules that
provide extra functionality. It is perfectly suited to the task of gluing together bits

1. In technical terms, you map an incoming XML tree into an outgoing XML tree according to rules
specified in the XSL/T stylesheet. The outgoing format is allowed to be something different from
XML, though, in case that should prove useful.

80

Chapter 7. Prototype implementation

and pieces of functionality into one program. Because it is an interpreted language,
it allows one to try out many things, which proved very useful.

There are four areas in which I used python mostly:

• Processing files with XSL/T stylesheets by calling Java on the command-line and
passing all the right arguments.

• Guiding files through a series of XSL/T stylesheets using temporary files.

• Reading and interpreting command-line parameters.

• Serving as a CGI program, called from a web browser.

7.1.2.3. Sed

Sed is a small utility that processes text files according to command-line parameters.
In this it serves a similar purpose as XSL/T, only on a much smaller scale. I used it
for some tasks that were hard to do in XSL/T, like generating a DTD out of an XML
file. A DTD is not XML compliant and contains a number of characters which
XSL/T does not like. So they had to be left out and were later added to the file by
means of a simple Sed command. I tried to use the right tool for the right job, not
trying to see every problem as a nail, having XSL/T’s hammer in my hand.

7.1.2.4. CSS

For displaying some XML files, I used CSS. This allowed me to view an XML file
in a browser without having to generate lots of HTML to create the desired
look&feel, since CSS can be used to specify how a particular XML tag should be
visualised. For an XML and CSS compliant browser, I used the newest release of
Mozilla (the former Netscape browser), because it supported all the new standards
well.

7.1.3. Usability
The goal of the prototype was to serve as a proof-of-concept. It was not intended to

81

Chapter 7. Prototype implementation

be the most good-looking, blindingly-fast program possible. Therefore I made only
a few browser interfaces. For most of the functionality it doesn’t even make much
sense to provide an interface, for most functionality is more the server-side kind.
This results in a number of command-line tools.

The speed of the programs also needs to be mentioned. The processing of the
XSL/T stylesheets takes up most of the time and isextremely slow. Every stylesheet
takes about a second to process, which adds up to 5-10 seconds per program (which
consists of multiple stylesheet processings). This is due to the fact that the python
program executes every stylesheet by starting up a shell with a Java command-line.
So, the results are not passed directly from XSL/T process to XSL/T process (which
is possible), but are stored in intermediate files. So every time, Java has to start, the
file has to be read, the XSL/T processor has to be run and the result written back to
a file. This is about the slowest way to implement it, but that does not mind much
for a prototype. Implementing everything in Java would have made it faster, but that
also means much more programming effort and it means you have to deal with a big
Java disadvantage: there is no direct way to pass parameters to a Java program when
called as a CGI program from a web browser. For my prototype, this was absolutely
necessary. But the much larger amount of programming work when choosing Java
was enough reason by itself not to do it.

7.2. Generic utilities

This section describes various generic utilities used. These utilities are used by most
of the other programs to complete much-used tasks.

7.2.1. ceXML convenience functions
cexmlhelper.py (seeSection D.1) is a small python program that provides basic
functions that can be called from the other python scripts. It serves the purpose of
keeping the amount of code in the other files down.

82

Chapter 7. Prototype implementation

set_linux_classpath()

Sets the classpath needed to execute the Java programs. Uses the specific
classpath info on my linux machine, hence the name.

process_with_xslt(in_file, xslt_file, parameters=[])

This function processesin_file with XSL/T stylesheetxslt_file (using
the optionalparameters to set variables in the stylesheet).

Some other small functions

These print out for instance the header needed when communicating an XML
or HTML file back to the user by means of a web server. Also a function to
remove temporary files is available.

7.2.2. Selecting a language
A step that is often necessary is to remove all languages except one from a file. The
language part is all situated within thename tags. These tags have an attribute
language . So, allname tags with an attributelanguage different from the
language to be retained should be removed.

An additional pitfall to be avoided is to strip away thename tags with alanguage

of "si" , because they are used within units using the S.I. system for measurements
(like m and kg).

This task is performed by an XSLT stylesheet, namedlanguage-.xslt (see
Section E.1). It reads through the entire file, removing allname tags except those
specified in the language which is to be preservedand the units which are specified
in S.I.

7.2.3. Propagation of characteristics
propagate.xslt (seeSection E.2) is used to propagate the characteristics of
parents to all children. As said before,builtobject s are stored in a tree-like
structure using specialisation. For reasons of efficiency, the file containing the
central tree-like structure does not repeat the characteristics of abuiltobject

83

Chapter 7. Prototype implementation

endlessly in all it’s children. For presentation and other purposes, it is however
necessary to have those characteristics copied from the parent to it’s children, also:
propagated. This stylesheet does the job.

7.2.4. Rejoining of characteristics
Again for reasons of efficiency (read: file-size) and because the same is done by the
LexiCon (upon which model the ceXML message model is based), not the full
information on thequantification s andfunction s is included every time they
are part of abuiltobject ’s characteristics . Instead, only a reference is made
in the form of<quantification><name

language="en">span</name></quantification> . This should eventually be
changed into the fullquantification , like:

<quantification>
<name language="en">span</name>
<name language="nl">overspanning</name>
<amount/>
<unit>
<name language="si">m</name>
</unit>
</quantification>

In this quantification , of course theunit tag also should be expanded. This
rejoining of place-holders with their original intended full information is done by
therejoin.xslt stylesheet (seeSection E.3).

7.2.5. Conclusions
The LexiCon system can largely be implemented in XML. Simple XSL/T
stylesheets can achieve a lot of the needed functionality.

84

Chapter 7. Prototype implementation

7.3. Dealing with the vocabulary and the
views

The purpose of the items covered in this section is to get some "building material"
for the visualisation and procurement section (following later on) by filling the
central multi-lingual vocabulary and two uni-lingual views.

7.3.1. The DTD of the message vocabulary
From the message model (Figure 6-11), I created a DTD (Section F.1). This DTD
contains a few extra attributes forbuiltobject , which are used by some of the
stylesheets and python programs. They have nothing to do with the actual model.

7.3.2. The filling of the message vocabulary
From an English book with data on concrete elements [Goodchild, 1997], I
extracted all prefab concrete elements (PCE), because prefab concrete elements
were to be the terrain upon which eConstruct would initially concentrate. All data
was entered into an XML file (Section G.1) both in Dutch and in English.The
reader is encouraged to take a detailed look at the actual XML file inSection G.1,
because it will really show the possibilities of this technology. From now on, I will
use the phrasefilled ceXML vocabularyto indicate this file, to keep in sync with the
phrasefilled LexiCon vocabulary, much used in the eConstruct project.

7.3.3. Generating the uni-lingual views
As explained inSection 6.5.2, the message vocabulary needs to be scaled down to a
view in order to be usable for exchanging information by an "ordinary" supplier or
customer. Following the ideas presented inSection 6.5.4, dtdbuilder.py (Section
D.2) generates either a Dutch or an English view DTD. For this it uses
propagate.xslt, rejoin.xslt andlanguage-.xslt . To prove their

85

Chapter 7. Prototype implementation

existence, both DTD’s are included in this document; the English one inSection F.2
and the Dutch one inSection F.3.

7.3.4. Creating the English and Dutch catalogs
The English catalog was filled with a few
composite-solid-prestressed-soffit-slab s and
reinforced-rectangular-beam s and the Dutch catalog withkanaalplaat

(hollow core slabs),voorgespannen-rechthoekige-ligger (reinforced
rectangular beams) andvoorgespannen-T-ligger (prestressed T-beams). Both
catalogs are only filled with elements in their own native language! Only the Dutch
is included, inSection G.2.

7.3.5. Conclusions
Both the model and the view are capable of holding real-world building and
construction data. Also, the model can automatically generate the views.

7.4. Visualising

This section takes care of the user interface and proves in a visible way the
multi-lingual capabilities.

7.4.1. Visualising the filled message vocabulary
A CGI script (again, python) namedtreeview.cgi was used to generate a the
Internet page showing a tree structure on the left-hand side and the characteristics of
the selected object on the right-hand side. The source of this script is included in
Section D.3, the only CGI script I’ll include. The output nicely resembles the look
of GEN. Multi-linguality is not a problem, asFigure 7-1andFigure 7-2show.

86

Chapter 7. Prototype implementation

The view is constructed by taking the filled message vocabulary (cexml.xml) and
by processing it withpropagate.xslt, rejoin.xslt, language-.xslt and
builtobjecttree.xslt . This last one (not included in the listings) formats the
resulting propagated, rejoined and pruned-of-all-but-one-language tree into below
screen-shots.

Figure 7-1. Dutch view on the filled message vocabulary

87

Chapter 7. Prototype implementation

Figure 7-2. English view on the filled message vocabulary

7.4.2. Visualising the catalogs
The catalogs are transformed into viewable pages by a more elaborate approach.
First a catalog is transformed usingview_to_cexml.xslt , which transforms the
catalog (which is in view format) back into a format which complies to
cexml_message.dtd . This file is, as it has been generated from a view,
uni-lingual. The resultingbuiltobject s are included in the filled message
vocabularycexml.xml by means of a Sed command. Thosebuiltobjects have

88

Chapter 7. Prototype implementation

been marked by an attributemode="view" After that, propagate and rejoin are,
again, used to fill thosebuiltobject s, after whichstrip.xslt is called to strip
out all builtobject s, except those marked withmode="view" . The propagation
and rejoining have added the missing language, so that the result is, again,
multi-lingual.

A CGI script is used to view the file generated above, callinglanguage-.xslt to
end with only the language of choice.Figure 7-3shows the Dutch catalog in
English andFigure 7-4showsbothcatalogs combined in English.

Figure 7-3. The Dutch catalog in English

89

Chapter 7. Prototype implementation

Figure 7-4. The content of both catalogs in English

7.4.3. Conclusions
Dealing with multiple languages is not a problem, even in visual user interfaces
using common browser technology. The chosen model enables an easy generation
of a GEN-like interface.

90

Chapter 7. Prototype implementation

7.5. Using business processes and contexts

This section follows a message from it’s inception through the first two steps of the
business process ofFigure 6-2. The message is first created, then it is send and
consecutively received by the receiver. He then processes the message and sends a
reply.

7.5.1. The message that is send
To send a message, first the envelope, message and business process model have to
be integrated into one DTD. With this DTD it should be possible to send a message
containing the following functionality:

• Addressing (from/to)

• Name of business process and the step therein

• List of built objects inviewformat

91

Chapter 7. Prototype implementation

Figure 7-5. The working of the context-manager

Thecontextmanager.py script takes as it’s input the desired language, the
business process and the field (like "prefab concrete elements"). It’s output is a
DTD, suitable for sending messages in the selected language, with the business
process and in the selected field. InSection F.4you find a sample DTD, generated
for communicating in the English language about prefab concrete elements. This
DTD was used to fill a message, which is included below (Example 7-1). This
message is a request from a contractor to a central repository (www.cexml.org, a
fake address) which has knowledge of the two catalogs owned by the English and
the Dutch supplier.

<!DOCTYPE envelope SYSTEM "pce_en_procurement.dtd">
<envelope>

<sender>
<!-- The addresses are in a format useful for a

quickly hacked prototype :-) -->
<address>../contractor/</address>

</sender>

92

Chapter 7. Prototype implementation

<recipient>
<address>../cexml/</address>

</recipient>
<businessprocess>

<bpname>procurement</bpname>
<bpstep>parts_needed</bpstep>

</businessprocess>
<message>

<cexml>
<hollow-core-slab amount="5">

</hollow-core-slab>
<reinforced-rectangular-beam amount="4">

</reinforced-rectangular-beam>
<double-T amount="8">

</double-T>

</cexml>
</message>

</envelope>

Example 7-1. request1.xml

7.5.2. Sending and receiving the message
The message is send by feeding above request (Example 7-1) to the small
sender.py script (Example 7-2).

#!/usr/bin/python
import cexmlhelper
import os
import sys
cexmlhelper.set_linux_classpath()
temp=cexmlhelper.process_with_xslt("%s"%sys.argv[1],"../cexml/dispatcher.xslt")
os.system("exec ‘cat %s‘ %s"% (temp, "%s"%sys.argv[1]))

Example 7-2. sender.py

This script runs the request trough a stylesheet that extracts a command-line out of
it. It takes for instance the name of the business process, prepends the address of the
recipient (which was specified in the form of a Unix pathname, every actor has it’s
own directory), thereby forming the name of an executable command. The location

93

Chapter 7. Prototype implementation

of the request is passed along as a command-line parameter so that the executed
program can read it.

7.5.3. Processing the message
The called program has the name of the business process (in this case
procurement). In much the same way as the process described inSection 7.4.2,
the actual message is stripped from it’s containing envelope and (in reaction to the
specific business process step), it is joined with both the English and the Dutch
catalog. The information again is "propagate"d and "rejoin"ed. A new process is the
search.xslt XSL/T stylesheet, which can be found inSection E.4. This
stylesheet looks for allbuiltobjects with a mode="search" attribute. It then
searches for abuiltobject exact matching the searched-for name and the - in this
case - correct desiredquantification span. Then all not-searched-for
builtobject s are stripped out and the reply basically is ready.

7.5.4. Sending a reply
The reply can be send in much the same way, but it is more illustrative if I format
the answer for printing. This is done by converting it (by using
print_answer.xslt , Section E.5) to a file with XSL/FO instructions. This is then
processed with xml.apache’s FOP (xsl/FO Processor) and the resulting PDF file is
printed. This is done by the small scriptprint.py (Section D.4). The result can be
seen inFigure 7-6.

94

Chapter 7. Prototype implementation

Figure 7-6. Screen-shot of the printed answer in Acrobat Reader

7.5.5. Conclusions
It is possible to have a context-manager assemble a purpose-built DTD which can
be used to write a message that can be send from one party to another. For this, only
the data contained within the message is needed, no extra information needs to be
specified e.g. on the command-line. Searching for a specific item in both catalogs is

95

Chapter 7. Prototype implementation

possible, whatever the language of the catalog. Also it is possible to generate nicely
formatted output on the fly.

7.6. Conclusions
The LexiCon system can largely be implemented in XML. Simple XSL/T
stylesheets can achieve a lot of the needed functionality.

Both the model and the view are capable of holding real-world building and
construction data. Also, the model can automatically generate the views.

Dealing with multiple languages is not a problem, even in visual user interfaces
using common browser technology. The chosen model enables an easy generation
of a GEN-like interface.

It is possible to have a context-manager assemble a purpose-built DTD which can
be used to write a message that can be send from one party to another. For this, only
the data contained within the message is needed, no extra information needs to be
specified e.g. on the command-line. Searching for a specific item in both catalogs is
possible, whatever the language of the catalog. Also it is possible to generate nicely
formatted output on the fly.

96

Chapter 8. Conclusions

This chapter first lists the most important conclusions from the entire document.
This is followed by a comparison of the results and the original objectives. It closes
with a personal appraisal of the research project.

8.1. Conclusions from Part I in ceXML - an
XML vocabulary for building and civil
engineering : outlining the problem

Three major existing solutions are available. Due to it’s specific nature (fragmented,
many relationships), the building and construction industry isn’t using any of these
solutions. So there is no industry-wide standard for the building and construction
industry and none of the three existing solutions comes close to being that
industry-wide standard.

The building and construction industry lags behind when compared with other
industries and to solve that problem, a simple, cheap electronic solution is needed.
In the European setting, a mapping of languages and concepts onto each other is
needed.

8.2. Conclusions from Part II in ceXML - an
XML vocabulary for building and civil
engineering : the building stones: XML and
other initiatives

The Internet is a good medium for communication. Access is cheap, generic tools
(like browsers) are freely available, almost everybody can use it. XML is an Internet

97

Chapter 8. Conclusions

technology that provides the possibility to use a vocabulary to tag information with
nametags, giving meaning to the text that is communicated.

The three most important influences on ceXML are:

• Clearly ebXML has got the appropriate context mechanism, the distinction
between generic and specific information and the idea to use specified business
processes as a tool to handle all the data.

• GEN provides ideas for a good user interface and provokes thoughts on how to
exchange information with existing systems.

• LexiCon’s influence is the way the vocabulary should look like.

8.3. Conclusions from Part III in ceXML - an
XML vocabulary for building and civil
engineering : Design and implementation of
the vocabulary

The LexiCon system can largely be implemented in XML. Simple XSL/T
stylesheets can achieve a lot of the needed functionality.

Both the model and the view are capable of holding real-world building and
construction data. Also, the model can automatically generate the views.

Dealing with multiple languages is not a problem, even in visual user interfaces
using common browser technology. The chosen model enables an easy generation
of a GEN-like interface.

It is possible to have a context-manager assemble a purpose-built DTD which can
be used to write a message that can be send from one party to another. For this, only
the data contained within the message is needed, no extra information needs to be
specified e.g. on the command-line. Searching for a specific item in both catalogs is
possible, whatever the language of the catalog. Also it is possible to generate nicely
formatted output on the fly.

98

Chapter 8. Conclusions

8.4. Successfulness of this research project

The successfulness of this research project is determined by comparing the outcome
with the original objectives

8.4.1. Investigating the state of the art
Investigating the state of the art of XML and related technologies, as well as related
vocabularies and related developments like EDI (Electronic Data Interchange) and
PDT (Product Data Technology).

My research into XML and related technologies has been successful. Much accurate
information has been gathered. Most of this information has been used for
eConstruct’s first publication. The related vocabularies have not received as much
attention, only so much as needed to gain insight in their working. The LexiCon
received more attention, it being the basis for my model. The related developments
have been merely glanced at, except ebXML, which provided me with lots of input
for the prototype. I also attended part of an ebXML meeting in Brussels.

8.4.2. The design and implementation of a vocabulary
The design and implementation of a vocabulary, separate from eConstruct’s work at
making eConstruct’s vocabulary (named bcXML, Building and Construction XML).
My task is to make a simple prototype vocabulary, allowing the mapping of one
language into another. Required input was the LexiCon meta-model (Section 5.3).
The model has to deal with prefab concrete elements, a field eConstruct decided to
concentrate upon for the time being, mostly because the Greek partner in the
project is a supplier of prefab concrete elements.

The vocabulary and surrounding techniques have been mostly based upon the
LexiCon meta-model and the ebXML way of working. The model turned out to
work real fine, while the idea of using a simplified view for e.g. catalogs also
proved usable. The amount of elements I used to fill the model is a bit low, though.
Especially the functions have not been filled in and only a marginal amount of

99

Chapter 8. Conclusions

quantifications. But for a prototype it was enough to prove that the concept works.
Mapping one language into another worked fine. It should be noted that only simple
translation was implemented, without any difficult mapping of
not-completely-similar concepts.

8.4.3. Prototype implementation
Testing of the vocabulary by means of a simple application. A vocabulary by itself is
not enough to prove that the concept can work. A prototype has to be designed in
order to test it. eConstruct concentrates it’s effort at first on the buying/selling
phase, because that is a regular, known form of e-commerce and it will be relatively
easy to gain widespread acceptance of that part of eConstruct’s functionality
(thereby paving the way for wide-spread usage of eConstruct as a whole). To
preserve the link with eConstruct, the prototype will concentrate on the buying and
selling phase also.

The prototype implementation is a collection of well-crafted XSL/T stylesheets
providing useful basic functionality and a handful of hacked-together python scripts
to tie it all together. Part of those scripts are used as CGI programs to visualise
either the filled vocabulary or a catalog. Those web representations provided the
desired GEN-like interface, but without built-in search functionality. Almost all
python scripts were happily translating vocabularies into views and vice versaand
were translating back and forth between the Dutch and the English language. The
multi-lingual capabilities and the conversion from a vocabulary to a view are by far
the brightest gems of this prototype.

The final test to use the context mechanism and business processes to get a
question-answer session rolling worked out, but not (to my taste) in a very
well-crafted way. Itdid prove, however, that the context mechanism works, that
business processes can be used to roll along a transaction solely based upon the data
in the original request. The action undertaken upon receiving of the request is the
best indicator for the possibilities of the entire system:an English request for two
specific built objects with a span of 5 meters returns the four matching elements
from both an English and a Dutch catalog. To top it off, the resulting answer is
formatted for printing using a simple XSL/FO stylesheet.

100

Chapter 8. Conclusions

8.5. Perspective for the building and
construction industry

What is the perspective for the building and construction industry as seen from this
research? It is the fact that the Internet and XML are going to change the industry
deeply. For the first time, two essential pieces are in place which are needed to
dramatically increase the efficiency of the communication in the industry. First, the
internet provides a cheap and easy communication medium, suitable for even the
smallest constructor firms. Second, XML provides the means to exchange virtually
all data and information in a way that is usable and (financially) affordable by any
firm, big or small.

So, this research showed that the Internet and XML aretheway ahead for the
building and construction industry. But to make it all happen, an framework is
needed. XMLdoesprovide the means to exchange data and information, but it
needs a vocabulary. This vocabulary will be provided by the eConstruct project (in
it’s vocabulary bcXML). In this research I made a quick prototype, having limited
time and using only a limited set of possible techniques. This prototype allready
provided prove of the fact that meaningful communication about construction
elements indeedis possible in multiple languages.

This shows that eConstruct will be able to present both the Internet and XML in a
usable way to the building and construction industry, providing the industry with an
undreamed-off level of communication possibilities. For this, eConstruct needs to

• create a vocabulary with enough expressive power to communicate meaningfully

• re-use and connect to existing solutions in order to quickly gain critical mass

• provide programs or web interfaces that allow cheap and easy usage of the
system, as well as connections to existing programs

101

Chapter 8. Conclusions

8.6. My personal appraisal of this research
project

• The learning experience was extensive. I gained a lot of knowledge, also from the
various eConstruct meetings. It really sparked my interest for this field of
research

• I managed to attain almost all objectives of this research project. The prototype
proves that it is possible to use XML to communicate meaningfully in the
building and construction industry without being constrained by different
languages.

• The prototype could to my taste have been made prettier. The functionality is in
place and is working, but it is a bit too much of a "dirty hack". But, when the day
is over, it is a prototype after all.

I was sent out into the wide, wide world to scout the terrain and to bring back
interesting technologies, useful for the building and construction industry. This I
have done, choosing myownroads and picking up those itemsI found interesting
or useful. The reader should regard this document as a scout’s report, showing the
possibilities of the terrain and depicting the rich lands ahead. It is my advice, as a
scout, to order the entire column to march down the road and to cultivate the
territory ahead, for the Internet and XMLaregoing to be very, very useful for the
building and construction industry.

102

IV. Appendices
Table of Contents

A. Deeper introduction on XML and related technologies..............................105

B. STEP explained in more detail...123

C. Reading Unified Modelling Language (UML) diagrams.............................125

D. Python listings...127

E. XSL/T listings ..131

F. Document Type Definitions (DTD’s)..143

G. XML files ...151

Appendix A. Deeper introduction on
XML and related technologies

Abstract

This section elaborates on the introduction given inSection 4.2.

In this section XML (eXtensible Markup Language) and a selection of related
technologies is discussed. XML is in effect a standardised way of dealing with data.
This makes it possible for a number of additional technologies to surface and
blossom together with XML, thereby making XML more powerful and useful. The
first section introduces XML as it stands by itself, the rest of the sections deals with
all the standards that supplement and enhance XML.

A.1. eXtensible Markup Language (XML) itself

XML itself is only the way data is tagged with information about the data. This
section describes this central technology, central to the rest of the XML framework.

A.1.1. Introduction to XML
XML stands for eXtensible Markup Language. It is a subset of SGML, the
Structured General Markup Language, which was a promising technology, but had a
reputation of intense complexity stemming from the enormous levels of
customisability and flexibility [St. Laurent, 1999], thus making it too difficult and
unattractive to receive a large following. XML is much simpler and smaller, though
it allows for flexibility undreamed of for many developers and users. The syntax is
quite akin to that of another SGML-descendant, HTML. XML uses an easy to

105

Appendix A. Deeper introduction on XML and related technologies

understand HTML-like syntax. For most uses, XML will probably completely
replace SGML.

<chapter>
<title>Coffee</title>
<para>

The delicious aroma surrounding the coffee machine puts
a smile on <emphasis>many</emphasis> faces.

</para>
</chapter>

Example A-1. XML syntax example

A.1.2. Structure of XML
XML - as a technology - consists of two parts.

Content

The XML file itself, the file containing the markup and the data, as in above
example.

Semantics

The XML Schema (newer technology) or Document Type Definition (DTD)
(older technology). At the beginning of the XML file, a reference is made to a
specific DTD. The file used to make this very document points to the DocBook
3.1 DTD, which specifies tags like<chapter> and<emphasis> . The DTD
specifies the allowed tagsand their hierarchy. A section2 is only allowed
within a section1, for example. Also specified are the allowed attributes like
colour="blue" strength="B35" .

106

Appendix A. Deeper introduction on XML and related technologies

Additionally, for XML files that aren’t meant just for data storage or data exchanges
between computers, information on how to visualise the xml data is needed. For
these needs, a third part is necessary:

Visualisation

One or more associated visualisation stylesheets. For every XML schema,
there should be one or more stylesheets, specifying how to
display/print/export/save an XML file associated with the schema. For
example, it is possible to use a html-stylesheet with the XML-file which
contains this document, a print-stylesheet, etc. This is only needed for XML
files that need viewing/printing/etc.

A.1.3. Usage of XML
By use of this threefold model (XML-file, schema, stylesheet), this technology is a
good example of the maxim “divide and conquer”. The data can be stored neatly,
readable and object-wise in a simple text format. The format (specified in the
schema) itself is adaptable to whatever need there may bein a well-defined way.
Whatever format one chooses, any XML-enabled program can read the information,
provided the schema is accessible to that program. To read it in this case means that
the program can build a tree-like representation of the data because of the
hierarchical nature of XML. To some applications, this is enough to be able to use
the data. This is the case when XML is used as a simple way to store information
only meant to be read by a specific application which knows what to do with it. For
world wide web-like applications, an associated stylesheet is needed. A program
which converts XML-documents like this article, which uses the DocBook 3.1
schema, to a printable format will need information which specifies that a
<para>...</para> pair indicates a block of text with one cm above and below,
margins of 3 cm and with a TimesRoman font. Likewise, with the same data, the
same schema and a different stylesheet, another program can easily generate a set of
webpages from the same source.

Likewise, a set of XML-files with various schema’s and stylesheets can be used to
represent a building. Some parts, like an elevator, get their own XML file because it
is being supplied by a subcontractor. The fileelevator.xml is referenced in the
main XML document. It is now possible to read all files and use a stylesheet (which

107

Appendix A. Deeper introduction on XML and related technologies

must be supplied with all the schema’s) to generate a nice-looking viewable model
of the entire building, including a moving elevator. The stylesheets - in this case -
must be able to specify the information contained in the XML files in a way suited
for VRML (Virtual Reality Modelling Language, a file format for generating three
dimensional images and animations). Current W3C (world wide web consortium)
research includes XSL/T (eXtendible Stylesheet Language/Transformation part),
which allows transformations from one format into another (seeSection A.2).

In the same way, a complete list of needed parts can be generated, provided the
schema ensures the XML files to contain that information and again provided a
usable stylesheet is available.

XML is, in essence, a standardised way to deal with metadata. The schema is the
place to specify the metadata, the actual XML file is where the data is placed, using
XML’s standard way to tag the various parts of information in it with the metadata
specified in the schema.

A.2. eXtensible Stylesheet
Language/Transformation part (XSL/T)

XSL/T (eXtensible Stylesheet Language/Transformation part) is the single most
useful standard alongside XML itself. It allows for transforming one format into
another. Beware of confusion, for a lot of technologies have got the namestylesheet
in them. This section deals with the transforming stylesheet XSL/T, while the next
session deal with the two formatting stylesheets (named XSL/FO and CSS).

A.2.1. Background
XSL/T was designed as a part of XSL, the eXtensible Stylesheet Language. XSL/T
adds the Transformation of one XML document into another. XSL itself provides
(besides XSL/T’s transformation) formatting of XML documents for on-line
reading, printing, speech programs, etc. (seeSection A.3At the moment, XSL/T

108

Appendix A. Deeper introduction on XML and related technologies

has gained much support from XML users in contrast to the not yet widely used
formatting part of XSL (named XSL/FO).

The difference between transformation and formatting might not be so clear at first.
With formattingis meant the way it should look. A paragraph should be indented by
2cm, font size 11pt and a black colour. Withtransformationis meant the
transformation of e.g. an entire document into a table of contents and just a list of
all available section abstracts.

A.2.2. Working of XSL/T
A program capable of performing XSL/T processing takes as it’s input both an
XML file and the stylesheet document mentioned in the XML file by use of an
<?xml-stylesheet href="sample.xslt" rel="stylesheet"

type="text/xsl"?> -tag. The output can be any format, but normally a valid
XML file or HTML is returned. Both the ingoing and the outgoing XML file are
internally represented by a tree-like structure. The stylesheet transforms and
re-arranges the incoming tree into the outgoing tree.

The stylesheet itself is a valid XML file, all instructions for the XSL/T processor are
given by means of XML tags. The stylesheet contains multiple templates. Each
template has a rule where it is matched against. The contents of the template are
instructions on how to transform the part of the tree which was matched by the
template rule. To transform a<emphasis> -tag in the incoming file to HTML’s
<i> -tag, the following template can be used:

<xsl:template match="emphasis">
<i>
<xsl:apply-templates />
</i>
</xsl:template>

Example A-2. XSL/T - basic example

109

Appendix A. Deeper introduction on XML and related technologies

This piece of code means that if the processor encounters an<emphasis> -tag in
the incoming tree, it should follow the instructions within the template. That means
putting the<i> opening and closing tag in the output tree and to continue
processing within the<i> -tag by applying any additional templates that might be
matched further down the tree.

Of course, tags like<xsl:if> and<xsl:while> are also available to make
conditional processing possible. Also some support for variables and calculation is
available, all geared towards being able to perform all needed document
transformations, including constructing atable of contentsfrom a well-structured
document and so on.

A.2.3. Example usage: transforming database output
Much information is - and will be - contained in relational databases. In this
example I will extract information out of a testdatabase containing information
about a few Internet pages I maintain at a local testsite. The database structure is as
follows:

CREATE TABLE pages (
url char(100) DEFAULT ” NOT NULL,
title char(200),
section char(10),
subject char(10),
date char(8),
printable char(100),
PRIMARY KEY (url)
);

Example A-3. XSL/T example - database table structure

This database is accessed using a JDBC connection. Every database vendor has
some tool of sorts to output XML information from it’s databases, but in this case I
use an XML page processed by Cocoon (part of Apache.org’s XML server project,
seeSection A.6).

110

Appendix A. Deeper introduction on XML and related technologies

<connectiondefs>
<connection name="page_connection">
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql://localhost/rr_doc</dburl>
<username>rr</username>
<password>Secret_password</password>
</connection>
</connectiondefs>

<filelist> <!--
the filelist tag is irrelevant to the example -->

<query connection="page_connection">
select * from pages order by section,subject,date

</query>
</filelist>

Example A-4. XSL/T example - xml file before transformation

When the XML file containing this code fragment is processed by Cocoon’s SQL
processor it removes above tags and replaces the query tag with the following
fragment:

<filelist> <!--
the filelist tag is irrelevant to the example -->

<ROWSET>
<ROW ID="0">
<url>writings/if5950/if5950_article/t1.html</url>
<title>Use of XML with project databases and Java</title>
<section>article</section>
<subject>xml</subject>
<date>20000202</date>
<printable></printable>
</ROW>
<ROW ID="1">
<url>writings/werkplan/werkplan/t1.html</url>
<title>Werkplan</title>
<section>info</section>

111

Appendix A. Deeper introduction on XML and related technologies

<subject>graduating</subject>
<date>20000315</date>
<printable>writings/werkplan/werkplan.pdf</printable>
</ROW>
</ROWSET>
</filelist>

Example A-5. XSL/T example - xml file after processing with cocoon’s SQL
processor

Every row is contained within<ROW>-tags and the actual data is contained within
tags named after the column name in the database. I wanted to convert this
information into a normal HTML table. For that purpose I use the following
stylesheet (also processed by Cocoon):

<xsl:template match="filelist">
<table>
<tr>
<td>Title</td>
<td>Section</td>
<td>Subject</td>
<td>Date</td>
<td></td>
</tr>
<xsl:for-each select="ROWSET">
<xsl:for-each select="ROW">
<tr>
<td>
<xsl:value-of select="title"/>
</td>
<td><xsl:value-of select="section"/></td>
<td><xsl:value-of select="subject"/></td>
<td><xsl:value-of select="date"/></td>
<td>
<xsl:if test="not(printable = ”) ">
Printable version
</xsl:if>

112

Appendix A. Deeper introduction on XML and related technologies

</td>
</tr>
</xsl:for-each>
</xsl:for-each>
</table>
</xsl:template>

Example A-6. XSL/T example - the stylesheet

A.2.4. Compiling stylesheets
A very recent development allows one to compile an XSL/T stylesheet into native
code (using c++) or Java bytecode. The resulting program can receive an XML file
as input. The output is the same as if you had processed the XML file with an
XSL/T processor and the original stylesheet. Compiling a XSL/T stylesheet into a
program has massive speed advantages, because a generic stylesheet processor
needs to be able to do everything and the compiled stylesheet only has to be able to
use it’s own stylesheet.

A.2.5. Possible use for ceXML
There are a few possible roles I see for the usage of XSL/T:

• As above, converting database output to more suitable XML formats

• Generating easily accessible HTML pages for use in ordinary browsers from the
more specialised XML data used by ceXML.

• Binding together multiple datasources in a platform- and vendor-neutral way.

• Selecting information from a ceXML file to suit the needs of the user (e.g. only
the list of materials)

Note should be taken that these are only possible roles, there are many more
technologies that can be used. The advantage I see at the moment is that using

113

Appendix A. Deeper introduction on XML and related technologies

XSL/T means using a native XML technology instead of using a purpose-written
program. Using as much native XML technologies as feasible makes for a nice
overall solution which can be adapted and re-used to one’s heart’s content.

A.3. Stylesheet languages for visualisation

As said on the W3C-pages:By attaching style sheets to structured documents on the
Web (e.g. HTML), authors and readers can influence the presentation of documents
without sacrificing device-independence or adding new HTML tags. Separation of
content and presentation, one of the holy grails of the Internet. In effect, you want
one file containing information expressed with meaningful tags and another one
containing instruction on how to present that tagged information to the user.

A.3.1. Difference Cascading Style Sheets (CSS) and
eXtensible Stylesheet Language/Formatting Objects
(XSL/FO)

CSS means Cascading Style Sheets (you can lay some styles on top of each other,
so to say). XSL/FO means eXtensible Style Sheets / Formatting Objects.

Both CSS and XSL/FO are formatting stylesheets in their own right. Both use the
same underlying formatting model. Both have knowledge about formatting like
font-size andmargin-left , but the syntax they use to access this formatting is
different.

The biggest difference is that XSL/FO is the formatting part of XSL. The other half
of XSL is XSL/T, the part that is capable of changing the information, rearranging
it, extracting parts, adding titles, etc. Both can be used independently (and
especially XSL/T mostlyis), but using the same language and way of expressing for
both the transformation and the formatting is an advantage.

114

Appendix A. Deeper introduction on XML and related technologies

A.3.2. Usage of stylesheets
The stylesheet controls the way the information is displayed to the user, either in
print or on screen. Tags are matched against rules and the relevant formatting
information is applied. In XSL/FO, making<scream> into bold text is done with
the following rule:

<xsl:template match="scream">
<fo:inline-sequence font-weight="bold">
<xsl:apply-templates/>
</fo:inline-sequence>
</xsl:template>

Example A-7. XSL/FO example

The same is done as follows in CSS:

scream { display: inline; font-weight: bold; }

Example A-8. CSS example

A.3.3. Use for ceXML
Both technologies do not offer anything spectacular to ceXML, but stylesheets are
simply needed to present information to the user in a well-formatted way. With
plain HTML a lot can be solved, but when one uses XML, informationhasto be
added indicating how it should be displayed, since no browser can possibly know
how to display a<contractfooter> -tag.

115

Appendix A. Deeper introduction on XML and related technologies

A.4. XML Namespaces

This section discusses XML Namespaces, a method of resolving conflicts between
similar tagnames having separate meanings. Also a choice between the use of
namespaces and the ebXML context mechanism is discussed.

A.4.1. Working
When designing an XML schema, many designers re-use other schemas. It is quite
common to use a subset of HTML when you need a piece of formatted text
somewhere in your XML files. But, when using elements from multiple sources
(read: XML schemas), you need to distinguish between the elements.<title> can
be the title of a chapter or the title of a person. When one tag exists in multiple
schemas, you need a way of telling them apart.

XML’s way of telling tags apart is to add a namespace reference in front of the tags.
A namespace reference is a string added in front of the tagname, separated by a
colon. The definition of that namespace reference has to be done beforehand,
linking the reference (in itself just a string) with the intended XML schema. See
Example A-9

<doc:chapter xmlns:doc=’http://docdoc.com’
xmlns:titles="http://title_references.net">

<doc:title>Title of chapter</doc:title>
<doc:para>

This is a sample paragraph about
<titles:title>Prof. Dr.</titles:title> Broadsword

demonstrating namespaces.
</doc:para>
</doc:chapter>

Example A-9. Example use of namespaces to distinguish between two title tags,
one indicating a chapter’s title, the other indicating a person’s title.

116

Appendix A. Deeper introduction on XML and related technologies

There are more possibilities, for example defining a default namespace for all
unspecified tags within a tag (handy when including HTML for documentation).
But above example covers the basics.

A.4.2. Design decisions involving namespaces
The mentioned example of including some HTML markup within an XML
document is one of the normal uses of namespaces. It can, however, also be used to
glue together different classifications or different models. ceXML could define a set
of general tags (including addressing etc.), which can be complemented by allowing
tags from, say, a prefab concrete namespace. This can be used as an alternative to
ebXML’s context mechanism (seeSection 5.1.2).

Using namespaces results in an XML-only solution, which can be readily used by
everyone. The context mechanism needs a purpose-build software solution to
accompany it. But the context mechanism is more flexible and it can generate
schemas without any need for action on the client side.

The namespace mechanism has been devised to tell apart tags with the same name
but a different meaning. The context mechanism has been devised to construct a set
of tags applicable to a certain intersection of contexts. As the intended usage of
ceXML is to communicate about building and construction data, it is likely that one
has to deal with a number of different classification systems and models. This
means that it will be difficult to assemble the right set of tags, excluding the
namespace mechanism for that task.

A.4.3. Conclusions
Namespaces can be useful, but their use is limited. For the detailed assembling of
the right set of tags for communicating a about a specific building or construction,
the context mechanism is best suited. For separating included documentation
(probably in an HTML-like format), the actual tags containing the construction data
and the generic addressing-like tags, the namespace mechanism is the best method
to prohibit possible tagname conflicts.

117

Appendix A. Deeper introduction on XML and related technologies

A.5. XML Linking

This section deals with XML Linking, the XML technology needed if you intend to
link together various pieces of information (like a technical drawing and the XML
files containing the information about the various parts).

A.5.1. Introduction
Formerly also known as XLink and XLL (eXtensible Linking Language), XML
Linking provides the mechanism needed by XML to interconnect. It’s role is
comparable to HTML’s... tag, but with
many more possibilities. It should be noted, though, that there is practically no
browser support for the additional functionality. Of course, XML Linking only
works in XML enabled programs.

A.5.2. Working
AnyXML element can be used as a link by adding anxlink:type attribute to the
element, provided thexmlns:xlink="http://www.w3.org/1999/xlink"

namespace is enabled for that element. As an example,<author

xlink:type="simple"

xlink:href="mailto:R.vanRees@ct.tudelft.nl" >Reinout</author>

is an author tag which points towards an email address. Thistype="simple"

usage is in fact the old HTML kind of linking.

The type="extended" usage is the other way XML Linking can be used. An
extended link is best described as adirected labelled graph, connecting multiple
nodes with arcs. Do not mistake the extended link to mean just one link, it can be,
but normally it is a set of links (better: arcs). It is composed of arbitrary tags having
the following attributes:

type=extended

Indicates an element containing elements which form a directed labelled graph.

118

Appendix A. Deeper introduction on XML and related technologies

type=locator

Indicates an element which points toward a remote location. That is, this
element serves as a node in the graph, pointing towards a remote resource with
a mandatoryhref="somewhere.xml" attribute.

type=resource

Indicates an element which serves as alocal node. That is, the element doesn’t
point towards a remote location, the information inside the element itself is
pointed to.

type=arc

Indicates an element describing one or more arcs (or: links) between nodes
usingxlink:from="..." andxlink:to="..." tags. The text on the dots
are the allowed origin(s) and destination(s) of the arc.
xlink:to="Dutch_mirror" means that this arc points towards all nodes
which have thexlink:role="Dutch_mirror" attribute.

A.5.3. Possible uses
There are three major ways in which to use XML Linking:

The HTML way

Any XML element can be made to behave just like the... tag of HTML, with the same purpose and usage
pattern. Just simple hyperlinking.

One-to-many relations

One localresourcecan point to multiplelocators (remote information). This
way, clicking on a link may bring up a small menu of possible choices listing a
few mirror sites, for example. Or, in an eventual online version of the lexicon,
it might link one Dutch term to the three possible alternative Norwegian terms.

Out-of-line links

Used this way, the document containing the XML Links is called alinkbase. It

119

Appendix A. Deeper introduction on XML and related technologies

does not contain any of the information which the links point to. It contains
links that point to information on other pages, possibly commenting on it,
providing extra information, etc. When proper tools or browsers become
available, a user might load an external linkbase and use it for browsing a
vendor’s online documentation, all the while comparing this vendor’s products
to the equivalent products of two other firms. Or an image of a building crane
might with one linkbase redirect a click on part of the image to the online
documentation and with another linkbase redirect it to an enlarged picture of
that specific part.

A.5.4. Possible use for ceXML
When ceXML is going to utilise XML instead of HTML for client side
presentation, at least thexlink:type="simple" usage is mandatory. Due to the
(normally) many contractors in a building and construction environment, the
out-of-line links (linkbase) looks like a good way to glue together various bits of
information without the need to centralise all those bits of information. Also the
one-to-many possibilities built into XML Linking make it possible to present
different views on a specific part (either the supplier’s information on the part, an
enlarged photo, it’s maintenance record, a error reporting form, etc.)

XML Linking is a good tool which can solve some problems with designing an
XML vocabulary for the building/construction industry and civil engineering, but it
desperately lacks common browser support. Therefore, when using current
browsers, much has to be emulated using javascript or like technologies. But the
XML Linking W3C working draft’s last call period ended 20 March 2000, so the
the technology is almost solid, which will make applications rapidly available.
Especially since the Mozilla browser effort has completed all but the last bits of
basic XML functionality, XML Linking can be expected fairly soon to be available
in a mainstream browser. Also Explorer can be expected to follow soon.

A.6. Cocoon - Apache’s xml effort

120

Appendix A. Deeper introduction on XML and related technologies

This section describes one of the efforts at creating an XML based document server.
While documents aren’t ceXML’s main focus, it is a handy way to extract
information from XML files containing (for example) technical data and to format it
automatically for presentation on the world wide web.

A.6.1. Background
Apache is the dominant web server (60% of all sites run it), available for almost all
platforms. Cocoon is part of the xml.apache.org effort at creating a set of
standards-based XML solutions. Cocoon is the part which provides the central
XML server. It is implemented in Java with a very modular architecture, allowing
for example a choice between various XML parsers. Most of the building blocks of
xml.apache.org have been donated by IBM, Sun and Oracle in order to integrate
them into one powerful whole.

A.6.2. Working of cocoon
Cocoon, being programmed in Java, uses the Java Server Pages (JSP) mechanism.
Every web server with JSP can redirect files with a specific extension (like.xml) to
Cocoon, while serving normal HTML pages, images, etc. itself. According to
processing instructions, Cocoon then routes the requested document through a
series of transformation steps before presenting the information to the user. To name
a possibility, it can start with an XML file containing SQL statements, it then
queries the database, replacing SQL with the database results in XML tags, then
transforms it using an XSL/T stylesheet into a readable XHTML file. Fairly quickly
a way to integrate many existing scripting solutions into the Cocoon framework will
be completed.

A.6.3. Possible use for ceXML
The possibility to use standard XML tools like XSL/T for transformations and
XSL:FO for formatting into, say, pdf make Cocoon an attractive framework for a
low-cost server side solution to use with ceXML. Though there is a choice of

121

Appendix A. Deeper introduction on XML and related technologies

various parsers and processors, home-brewed solutions can be made and integrated
fairly easily. When web server functionality is needed by ceXML, Cocoon can
provide a quick initial solution, if not more.

122

Appendix B. STEP explained in more
detail

The inner workings of STEP are interesting enough to include an outline in this
document. Because it does not fit well in the flow of the main text, this information
is included in this appendix.

The STEP technology consists of five parts:

Application protocols

These protocols describe specific application fields. Not only do they describe
which data is to be used to describe a product, but alsohowthe data is to be
used.

Integrated information resources

These are the common resources that are used by the application protocols.
Everything is divided into separate resources, so that re-use is possible. A
number of resources is earmarked especially for it’s generic character in order
to encourage their use, so that the costs of developing a new standard (using
STEP) can be kept down.

Implementation & conformance

This part describes how to map the models which have been formally specified
in STEP into a format used in the specific STEP implementation. Also this part
contains information on how to perform conformance1 testing.

Abstract test suites

In co-operation with above conformance specification (from the
implementation & conformance part), this part provides the test data and
criteria used to assess the conformance of a software package to the certain
application protocol.

1. Conformance means whether or not the data in question is conforming to the standard. This standard
has to be known and formally specified in order to enable a check for standard conformance.

123

Appendix B. STEP explained in more detail

Description methods

This is the bottom layer of STEP, explaining how to describe all STEP related
models and software. An important part is the EXPRESS language reference,
defining the data modelling language used in STEP.

124

Appendix C. Reading Unified
Modelling Language (UML) diagrams

In this document, only a limited set of symbols from UML (Unified Modelling
Language) is used. Two kinds of diagrams, the Use Case diagram and the class
diagram are presented. Again, this is not a complete introduction on UML, only
what is needed to read the diagrams in this document.

C.1. Use Case diagram

Figure C-1. Use Case diagram example

Two actors want to interact with each other. Actor 1 performs action 1 towards
Actor 2, who performs Action 2 towards Actor 1 and so on. An actor can be
someone like acontractorand an action can be something likerequest catalogue.

125

Appendix C. Reading Unified Modelling Language (UML) diagrams

C.2. Class diagram

Figure C-2. Class diagram example

A class is a single item. Like abuiltobject or a function . They are depicted
using a rectangle. If there are any attributes (that is, some internal information for
that class), an extra box is drawn in the rectangle and the attribute information is
placed in the second box. A classdoor can have the attribute
language="english" .

A line from one class to another indicates a relationship, For example, a
quantification has both anamount and aunit . A line with a triangle at it’s end
indicates an inheritance relation, the attributes and other characteristics of the item
having the triangle next to it are inherited by the item on the other end of the line.

126

Appendix D. Python listings

D.1. cexmlhelper.py
#!/usr/bin/python

This module contains some helper functions to keep the length of the
files that use this module within reasonable bounds. The functions
all provide standard functionality needed to work with ceXML and
xml.apache.org’s Xalan parser and Xerces XSLT processor.

import tempfile
import os

initialise tempfile’s first part of the temporary filenames
tempfile.template = "cexmlhelper"
Start a list containing the generated temporary files, allowing for
a clean-up when they’re not needed anymore
list_of_tempfiles = []

def set_linux_classpath():
Sets the classpath. This is a specific implementation for my
personal linux system, someday this will be more
generic. Perhaps I’ll even write a nice wrapper for more
systems :-)
os.putenv("CLASSPATH","/usr/lib/jdk1.1/lib/classes.zip:"+
"/usr/share/java/xerces.jar:/usr/share/java/xalan.jar")

def process_with_xslt(in_file, xslt_file, parameters=[]):
feeds "in_file" to "xslt_file" using the optional
"parameters". The "parameters" must be a python list of
key-value tuples. The return value is the name of the temporary
file containing the output.
commandline = "java org.apache.xalan.xslt.Process"
Add the in_file
commandline = commandline + " -in %s" % in_file
Add the xslt_file
commandline = commandline + " -xsl %s" % xslt_file
Generate a temporary filename and add it as the process’ output
out_file = tempfile.mktemp()
list_of_tempfiles.append(out_file)
commandline = commandline + " -out %s" % out_file
if len(parameters) > 0:

i = 0
while i < len(parameters):

commandline=commandline+" -param %s %s" % parameters[i]
i=i+1

add some stuff to suppress annoying output
commandline = commandline + " -Q -QC"
run the commandline
os.system(commandline)
return the output filename (a temporary one)
return out_file

def print_xml_header():

127

Appendix D. Python listings

Prints the header needed to send the file over HTTP. Normally
not needed, because print_xml_file() calls it automatically, but
you never know...
os.system("echo Content-type: text/xml")
os.system("echo")

def print_html_header():
Prints the header needed to send the file over HTTP. Normally
not needed, because print_html_file() calls it automatically, but
you never know...
os.system("echo Content-type: text/html")
os.system("echo")

def print_xml_file(xml_file):
Prints the xml header and the xml_file
print_xml_header()
os.system("cat %s" % xml_file)

def print_html_file(html_file):
Prints the html header and the html_file
print_html_header()
os.system("cat %s" % html_file)

def remove_temporary_files():
i = 0
while i < len(list_of_tempfiles):

os.system("rm %s" % list_of_tempfiles[i])
i=i+1

D.2. dtdbuilder.py
#!/usr/bin/python

This cgi script is used to display the central ceXML xml file
containing all the builtobjects, quantifications, languages,
etcetera. Also, some small editing possibilities are available.

import sys
import os
import cexmlhelper
import tempfile

try:
selected_language = sys.argv[1]

except:
selected_language = "en"

Set the classpath
cexmlhelper.set_linux_classpath()
First, propagate all characteristics of the parents over all the
children
temporary_file = cexmlhelper.process_with_xslt("cexml.xml",

"propagate.xslt")
Then, re-join the complete function, unit and quantification info
with the builtobject tree
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

128

Appendix D. Python listings

"rejoin.xslt")
Next, strip out the un-needed languages
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

"language-.xslt",
[("selectedlanguage",

"\"’%s’\"" %
selected_language)])

change it to the DTD of a view
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

"view.xslt")
then, correct some errors which aren’t dealt with easily in XSLT
temporary_file_2 = tempfile.mktemp()
cexmlhelper.list_of_tempfiles.append(temporary_file_2)
os.system("sed ’s/()*>/EMPTY>/g’ %s > %s" % (temporary_file,

temporary_file_2))
os.system("sed ’s/|)/)/g’ %s > %s" % (temporary_file_2, temporary_file))

try:
resulting_dtd = sys.argv[2]
os.system("cp %s %s" % (temporary_file, resulting_dtd))

except:
os.system("cat %s" % temporary_file)

cexmlhelper.remove_temporary_files()

D.3. treeview.cgi
#!/usr/bin/python

This cgi script is used to display the central ceXML xml file
containing all the builtobjects, quantifications, languages,
etcetera. Also, some small editing possibilities are available.

import cgi
import os
import cexmlhelper

Read in the parameters passed to this script using the CGI POST
method
form = cgi.FieldStorage()
try:

selected_language = form["selectedlanguage"].value
except:

selected_language = "en"
try:

selected_name = form["selectedname"].value
except:

selected_name = "beam"
try:

mode = form["mode"].value
except:

mode = "normal"
try:

new_name = form["newname"].value
except:

new_name = "test"

129

Appendix D. Python listings

try:
edit_language = form["editlanguage"].value

except:
edit_language = "en"

Set the classpath
cexmlhelper.set_linux_classpath()
First, propagate all characteristics of the parents over all the
children
temporary_file = cexmlhelper.process_with_xslt("cexml.xml",

"propagate.xslt")
Then, re-join the complete function, unit and quantification info
with the builtobject tree
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

"rejoin.xslt")
Next, strip out the un-needed languages
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

"language-.xslt",
[("selectedlanguage",

"\"’%s’\"" %
selected_language)])

Finally, prepare the info for visualisation
temporary_file = cexmlhelper.process_with_xslt(temporary_file,

"builtobject_tree.xslt",
[("selectedname",

"\"’%s’\"" %
selected_name),

("selectedlanguage",
"\"’%s’\"" %
selected_language)])

cexmlhelper.print_xml_file(temporary_file)
cexmlhelper.remove_temporary_files()

D.4. print.py
#!/usr/bin/python
import cexmlhelper
import os
import sys
cexmlhelper.set_linux_classpath()
process the first commandline argument (which should be a file)
with the print_answer.xslt stylesheet
temp=cexmlhelper.process_with_xslt("%s"%sys.argv[1],"print_answer.xslt")
Call the xml.apache FOP processor on the commandline
os.system("java org.apache.fop.apps.CommandLine %s answer.pdf"% temp)
print the resulting PDF file
os.system("lpr answer.pdf")

130

Appendix E. XSL/T listings

E.1. language-.xslt
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:html="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.0"
>

<xsl:output doctype-system="cexml_message.dtd"
indent="yes"
method="xml"
/>

<!-- This default declaration is needed immediately at the top,
otherwise the xslt sheet won’t even know this variable exists. The
true value is passed to this xslt sheet on the command line -->
<xsl:param name="selectedlanguage" select="’default value’"/>

<xsl:template match="/">
<xsl:apply-templates select="cexml"/>

</xsl:template>

<xsl:template match="cexml">
<xsl:element name="cexml">

<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="builtobject">
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="characteristics" />
<xsl:apply-templates select="builtobject" />

</xsl:element>
</xsl:template>

<xsl:template match="characteristics">
<xsl:element name="characteristics">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />

</xsl:element>
</xsl:template>

<xsl:template match="name">
<!-- If a "name" tag is found, remove it, unless it is in the
desired language OR in the language "si", indicating an S.I. unit
-->

131

Appendix E. XSL/T listings

<xsl:if test="@language=$selectedlanguage or @language=’si’">
<xsl:element name="name">

<xsl:call-template name="copy-attributes"/>
<xsl:value-of select="."/>

</xsl:element>
</xsl:if>

</xsl:template>

<xsl:template match="quantification">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="function">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="quantification" />

</xsl:element>
</xsl:template>

<xsl:template match="unit">
<xsl:element name="unit">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />

</xsl:element>
</xsl:template>

<xsl:template name="copy-attributes">
<xsl:for-each select="@*">

<xsl:copy />
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

E.2. propagate.xslt
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:html="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.0"
>

<xsl:output doctype-system="cexml_message.dtd"
indent="yes"
/>

<!-- The purpose of this XSLT stylesheet is to propagate the of a
builtobject to all his children. This is by having every element
copy the characteristics of his parents. The copied characteristics,

132

Appendix E. XSL/T listings

quantification and function) are marked by setting attribute
copied="yes". -->

<xsl:template match="/">
<xsl:apply-templates select="cexml"/>

</xsl:template>

<xsl:template match="cexml">
<xsl:element name="cexml">

<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="builtobject">
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="characteristics" />
<xsl:apply-templates select="builtobject" />

</xsl:element>
</xsl:template>

<xsl:template match="characteristics">
<xsl:element name="characteristics">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="quantification" />
<xsl:if test=’../@mode!="search"’>

<!-- add all ancestor’s quantifications here -->
<xsl:apply-templates

select="ancestor::builtobject/ancestor::builtobject/child::characteristics/child::quantification"
mode="propagate"/>

</xsl:if>
<!-- continue normally with the functions -->
<xsl:apply-templates select="function" />
<xsl:if test=’../@mode!="search"’>

<!-- add all ancestor’s functions here -->
<xsl:apply-templates

select="ancestor::builtobject/ancestor::builtobject/child::characteristics/child::function"
mode="propagate" />

</xsl:if>
</xsl:element>

</xsl:template>

<xsl:template match="name">
<xsl:element name="name">

<xsl:call-template name="copy-attributes"/>
<xsl:value-of select="."/>

</xsl:element>
</xsl:template>

<xsl:template match="amount">
<xsl:element name="amount">

<xsl:value-of select="."/>
</xsl:element>

</xsl:template>

133

Appendix E. XSL/T listings

<xsl:template match="quantification">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="function">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="quantification" />

</xsl:element>
</xsl:template>

<xsl:template match="unit">
<xsl:element name="unit">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />

</xsl:element>
</xsl:template>

<xsl:template name="copy-attributes">
<xsl:for-each select="@*">

<xsl:copy />
</xsl:for-each>

</xsl:template>

<!-- TEMPLATES SPECIFIC TO THIS STYLESHEET BELOW THIS LINE -->

<xsl:template match="quantification" mode="propagate">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:attribute name="copied">yes</xsl:attribute>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="amount" />

</xsl:element>
</xsl:template>

<xsl:template match="function" mode="propagate">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:attribute name="copied">yes</xsl:attribute>
<xsl:apply-templates select="name" />

</xsl:element>
</xsl:template>

</xsl:stylesheet>

E.3. rejoin.xslt
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

134

Appendix E. XSL/T listings

xmlns:html="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.0"
>

<xsl:output doctype-system="cexml_message.dtd"
indent="yes"
/>

<xsl:template match="/">
<xsl:apply-templates select="cexml"/>

</xsl:template>

<xsl:template match="cexml">
<xsl:element name="cexml">

<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="builtobject">
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:choose>

<xsl:when test=’self::node()[@mode="view"]’>
<xsl:param name="target">

<xsl:value-of select="string(./name)"/>
</xsl:param>
<!-- search in the tree for a builtobject with a builtobject
parent in order *not* to find some builtobject with a
characteristics parent... Then copy that builobject’s names
-->
<xsl:apply-templates
select="//builtobject/builtobject[name=string($target)]"
mode="snatch" />

</xsl:when>
<xsl:otherwise>

<xsl:apply-templates select="name" />
</xsl:otherwise>

</xsl:choose>
<xsl:apply-templates select="characteristics" />
<xsl:apply-templates select="builtobject" />

</xsl:element>
</xsl:template>

<xsl:template match="characteristics">
<xsl:element name="characteristics">

<xsl:call-template name="copy-attributes"/>
<!-- all other elements below characteristics need rejoining,
except "amount" -->
<xsl:if test=’not(../@mode="search")’>

<xsl:apply-templates select="builtobject" mode="rejoin"/>
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="quantification" mode="rejoin" />
<xsl:apply-templates select="function" mode="rejoin" />

</xsl:if>
<xsl:if test=’../@mode="search"’>

<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="quantification" />

135

Appendix E. XSL/T listings

<xsl:apply-templates select="function" />
</xsl:if>

</xsl:element>
</xsl:template>

<xsl:template match="name">
<xsl:element name="name">

<xsl:call-template name="copy-attributes"/>
<xsl:value-of select="."/>

</xsl:element>
</xsl:template>

<xsl:template match="amount">
<xsl:element name="amount">

<xsl:value-of select="."/>
</xsl:element>

</xsl:template>

<xsl:template match="quantification">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="function">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="quantification" />

</xsl:element>
</xsl:template>

<xsl:template match="unit">
<xsl:element name="unit">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />

</xsl:element>
</xsl:template>

<xsl:template name="copy-attributes">
<xsl:for-each select="@*">

<xsl:copy />
</xsl:for-each>

</xsl:template>

<!-- BELOW HERE ARE THE SPECIFIC TEMPLATES FOR REJOIN -->

<xsl:template match="builtobject" mode="rejoin">
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:param name="target">

<xsl:value-of select="string(./name)"/>
</xsl:param>
<!-- search in the tree for a builtobject with a builtobject
parent in order *not* to find some builtobject with a
characteristics parent... Then copy that builobject’s names -->
<xsl:apply-templates
select="//builtobject/builtobject[name=string($target)]"

136

Appendix E. XSL/T listings

mode="snatch" />
</xsl:element>

</xsl:template>

<xsl:template match="quantification" mode="rejoin">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:param name="target">

<xsl:value-of select="string(./name)"/>
</xsl:param>
<!-- search for a quantification immediately below the cexml
element with the correct name -->
<xsl:apply-templates
select="/cexml/quantification[name=string($target)]"
mode="snatch" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="unit" mode="rejoin"/>

</xsl:element>
</xsl:template>

<xsl:template match="function" mode="rejoin">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:param name="target">

<xsl:value-of select="string(./name)"/>
</xsl:param>
<!-- search for a function immediately below the cexml
element with the correct name -->
<xsl:apply-templates
select="/cexml/function[name=string($target)]"
mode="snatch" />
<xsl:apply-templates select="quantification" mode="rejoin" />

</xsl:element>
</xsl:template>

<xsl:template match="unit" mode="rejoin">
<xsl:element name="unit">

<xsl:call-template name="copy-attributes"/>
<xsl:param name="target">

<xsl:value-of select="string(./name[1])"/>
</xsl:param>
<!-- search for a unit immediately below the cexml
element with the correct name -->
<xsl:apply-templates
select="/cexml/unit[name=string($target)]"
mode="snatch" />

</xsl:element>
</xsl:template>

<xsl:template match="quantification" mode="snatch">
<xsl:apply-templates select="name" />

</xsl:template>

<xsl:template match="function" mode="snatch">
<xsl:apply-templates select="name" />
<xsl:apply-templates select="quantification" mode="rejoin"/>

</xsl:template>

<xsl:template match="*" mode="snatch">
<xsl:if test=’not(self::node()[@mode="view"])’>

<xsl:apply-templates select="name" />

137

Appendix E. XSL/T listings

</xsl:if>
</xsl:template>

</xsl:stylesheet>

E.4. search.xslt
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:html="http://www.w3.org/1999/xhtml"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.0"
>

<xsl:output doctype-system="cexml_message.dtd"
indent="yes"
/>

<xsl:template match="/">
<xsl:apply-templates select="cexml"/>

</xsl:template>

<xsl:template match="cexml">
<xsl:element name="cexml">

<!-- search for every builtobject with a builtobject parent
(excluding the builtobjects which are characteristics), with the
extra requirement that they have the attribute mode="search" -->
<xsl:apply-templates
select=’//builtobject/builtobject[@mode="search"]’ mode="search" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="builtobject">
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="characteristics" />
<xsl:apply-templates select="builtobject" />

</xsl:element>
</xsl:template>

<xsl:template match="characteristics">
<xsl:element name="characteristics">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="builtobject" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="quantification" />
<xsl:apply-templates select="function" />

</xsl:element>
</xsl:template>

<xsl:template match="name">
<xsl:element name="name">

138

Appendix E. XSL/T listings

<xsl:call-template name="copy-attributes"/>
<xsl:value-of select="."/>

</xsl:element>
</xsl:template>

<xsl:template match="amount">
<xsl:element name="amount">

<xsl:value-of select="."/>
</xsl:element>

</xsl:template>

<xsl:template match="quantification">
<xsl:element name="quantification">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="amount" />
<xsl:apply-templates select="unit" />

</xsl:element>
</xsl:template>

<xsl:template match="function">
<xsl:element name="function">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="quantification" />

</xsl:element>
</xsl:template>

<xsl:template match="unit">
<xsl:element name="unit">

<xsl:call-template name="copy-attributes"/>
<xsl:apply-templates select="name" />

</xsl:element>
</xsl:template>

<xsl:template name="copy-attributes">
<xsl:for-each select="@*">

<xsl:copy />
</xsl:for-each>

</xsl:template>

<!-- TEMPLATES SPECIFIC TO THIS STYLESHEET BELOW THIS LINE -->

<xsl:template match="builtobject" mode="search">
<!-- I’m a barbarian, but I’m only implementing the search for
"span" (or "overspanning" in Dutch) at the moment.
So: search for
* a builtobject with the correct name
* with the correct value for quantity "span"
-->
<xsl:param name="current_name">

<xsl:value-of select="./name"/>
</xsl:param>
<xsl:param name="current_amount">

<xsl:value-of
select=’./characteristics/quantification[name="span"]/amount’/>

</xsl:param>
<xsl:for-each
select=’//builtobject/builtobject[name=$current_name][@mode!="search"]’>

<xsl:if

139

Appendix E. XSL/T listings

test=’characteristics/quantification[name="span"]/amount=$current_amount’>
<xsl:element name="builtobject">

<xsl:call-template name="copy-attributes"/>
<xsl:attribute name="mode">found</xsl:attribute>
<xsl:apply-templates select="name" />
<xsl:apply-templates select="characteristics" />

</xsl:element>
</xsl:if>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

E.5. print_answer.xslt
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0"
>

<xsl:template match="/">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<!-- defines page layout -->
<fo:layout-master-set>

<fo:simple-page-master master-name="normal"
height="29.7cm"
width="21cm"
margin-top="1.0cm"
margin-bottom="1.0cm"
margin-left="2.5cm"
margin-right="2.5cm">

<fo:region-before extent="1.5cm"/>
<fo:region-body margin-top="3cm"/>
<fo:region-after extent="1.5cm"/>

</fo:simple-page-master>
</fo:layout-master-set>

<xsl:apply-templates select="cexml"/>
</fo:root>

</xsl:template>

<xsl:template match="cexml">
<fo:page-sequence master-name="normal">

<fo:flow>
<fo:block font-size="50pt"

font-family="sans-serif"
line-height="50pt"
space-after.optimum="50pt"
background-color="gray"
color="white"
text-align="center">
Articles found

</fo:block>
<xsl:apply-templates select="builtobject" />

</fo:flow>

140

Appendix E. XSL/T listings

</fo:page-sequence>
</xsl:template>

<xsl:template match="builtobject">
<!-- print the name of the builtobject pretty big -->
<fo:block font-size="30pt"

font-family="sans-serif"
line-height="30pt"
space-after.optimum="15pt"
color="gray"
text-align="left">
<xsl:value-of select=’name[@language="en"]’ />

</fo:block>
<!-- print the supplier’s name -->
<fo:block font-size="18pt"

font-family="sans-serif"
line-height="18pt"
space-after.optimum="15pt"
color="black"
margin-left="1cm"
text-align="left">
Supplier: <xsl:value-of select=’@supplier’ />

</fo:block>
<xsl:apply-templates select="characteristics/quantification" />

</xsl:template>

<xsl:template match="quantification">
<!-- print the quantification -->
<fo:block font-size="18pt"

font-family="sans-serif"
line-height="18pt"
space-after.optimum="15pt"
color="black"
margin-left="1cm"
text-align="left">
<xsl:value-of select=’name[@language="en"]’ />=
<xsl:value-of select=’amount’ />
<xsl:value-of select=’unit/name[@language="en"]’ />

</fo:block>
</xsl:template>

</xsl:stylesheet>

141

Appendix E. XSL/T listings

142

Appendix F. Document Type
Definitions (DTD’s)

F.1. cexml_message.dtd
<!-- ceXML message model DTD

Started 2000-08-14 by Reinout van Rees
R.vanRees@ct.tudelft.nl

This DTD is used to make instances of the message model
according to the specification found in the report written for
my graduation project

-->

<!-- **
The element "name" serves to hold a string indicating a
certain built object, a unit, a symbol or a
quantification. Needed for this is a attribute ,
indicating the language this specific "name" uses. For this,
you should use xml:lang, especially designed for this
purpose.
**

-->

<!-- element_name rule -->
<!ELEMENT name (#PCDATA)>
<!-- target_element attr_name attr_type default-->
<!ATTLIST name language NMTOKEN #IMPLIED >

<!-- **
A "symbol" is used to represent either a unit or a
quantification. It is used as a shorthand version.
e.g. centimeters => cm
It has possibly one name
**

-->

<!-- element_name rule -->
<!ELEMENT symbol (name?)>

<!-- **
A "unit" is a unit of measurement, like centimeters. It has
at least one name.
**

-->

<!-- element_name rule -->
<!ELEMENT unit (name*)>

<!-- **

143

Appendix F. Document Type Definitions (DTD’s)

An "amount" is a placeholder for a number.
**

-->

<!-- element_name rule -->
<!ELEMENT amount (#PCDATA)>

<!-- **
A "quantification" either quantifies a function or it
quantifies a built object. So it has a unit and an optional
amount. Also it can have one or more names.
**

-->

<!-- element_name rule -->
<!ELEMENT quantification (name+,amount*,unit*)>
<!-- target_element attr_name attr_type default-->
<!ATTLIST quantification copied CDATA #IMPLIED >

<!-- **
A "function" identifies a function of a built object. It can
have one or more names and possibly a few quantifications.
**

-->

<!-- element_name rule -->
<!ELEMENT function (name+,quantification*)>
<!-- target_element attr_name attr_type default-->
<!ATTLIST function copied CDATA #IMPLIED >

<!-- **
"characteristics" are used to group the characteristics of
built objects (for clarity)
The characteristics are the subparts (built objects), an
optional amount, optional quantifications and optional
functions.
**

-->

<!-- element_name rule -->
<!ELEMENT characteristics (builtobject*,

amount?,
quantification*,
function*)>

<!-- **
A "builtobject" is the central building block of the
vocabulary, indicating the actual built objects. They can
have other builtobjects in a hierarchy below them and they
one "characteristics". They also can have names.
**

-->

<!-- element_name rule -->
<!ELEMENT builtobject (name+,

characteristics?,
builtobject*)>

<!-- the following are attributes that I needed to quickly hack

144

Appendix F. Document Type Definitions (DTD’s)

together a working prototype. They’d better be solved in a different
way, imo -->
<!-- target_element attr_name attr_type default-->
<!ATTLIST builtobject copied CDATA #IMPLIED >
<!ATTLIST builtobject mode CDATA #IMPLIED >
<!ATTLIST builtobject selectID CDATA #IMPLIED >
<!ATTLIST builtobject supplier CDATA #IMPLIED >

<!-- **
A "cexml" element serves as a container for the major
elements, so that in *one* xml file, there can be:
* a tree of builtobjects
* a list of functions
* a list of quantifications
* a list of units
* a list of symbols
* a list of names
**

-->

<!-- element_name rule -->
<!ELEMENT cexml (builtobject,

(function|
quantification|
unit|
symbol|
name)*)>

F.2. cexml_en.dtd
<!ELEMENT cexml (prefab-concrete-element| slab|
composite-solid-prestressed-soffit-slab| topping|
composite-lattice-girder-soffit-slab| hollow-core-slab|
composite-hollow-core-slab| topping| double-T| composite-double-T| topping|
block| beam| reinforced-rectangular-beam| reinforced-inverted-L-beam|
reinforced-T-beam| column| internal-column| edge-column| corner-column|
other-elements| topping)*>
<!ELEMENT prefab-concrete-element EMPTY>
<!ATTLIST prefab-concrete-element amount CDATA #REQUIRED >
<!ELEMENT slab (span| width| thickness| loadbearing)*>
<!ATTLIST slab amount CDATA #REQUIRED >
<!ELEMENT composite-solid-prestressed-soffit-slab (span| width| thickness|
loadbearing)*>
<!ATTLIST composite-solid-prestressed-soffit-slab amount CDATA #REQUIRED >
<!ELEMENT composite-lattice-girder-soffit-slab (span| width| thickness|
loadbearing)*>
<!ATTLIST composite-lattice-girder-soffit-slab amount CDATA #REQUIRED >
<!ELEMENT hollow-core-slab (span| width| thickness| loadbearing)*>
<!ATTLIST hollow-core-slab amount CDATA #REQUIRED >
<!ELEMENT composite-hollow-core-slab (span| width| thickness| loadbearing)*>
<!ATTLIST composite-hollow-core-slab amount CDATA #REQUIRED >
<!ELEMENT double-T (span| width| thickness| loadbearing)*>
<!ATTLIST double-T amount CDATA #REQUIRED >

145

Appendix F. Document Type Definitions (DTD’s)

<!ELEMENT composite-double-T (span| width| thickness| loadbearing)*>
<!ATTLIST composite-double-T amount CDATA #REQUIRED >
<!ELEMENT block (span| width| thickness| loadbearing)*>
<!ATTLIST block amount CDATA #REQUIRED >
<!ELEMENT beam (construction-depth| span)*>
<!ATTLIST beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-rectangular-beam (construction-depth| span)*>
<!ATTLIST reinforced-rectangular-beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-inverted-L-beam (construction-depth| span)*>
<!ATTLIST reinforced-inverted-L-beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-T-beam (construction-depth| span)*>
<!ATTLIST reinforced-T-beam amount CDATA #REQUIRED >
<!ELEMENT column (length| area)*>
<!ATTLIST column amount CDATA #REQUIRED >
<!ELEMENT internal-column (length| area)*>
<!ATTLIST internal-column amount CDATA #REQUIRED >
<!ELEMENT edge-column (reinforcement| length| area)*>
<!ATTLIST edge-column amount CDATA #REQUIRED >
<!ELEMENT corner-column (reinforcement| length| area)*>
<!ATTLIST corner-column amount CDATA #REQUIRED >
<!ELEMENT other-elements EMPTY>
<!ATTLIST other-elements amount CDATA #REQUIRED >
<!ELEMENT topping (thickness)*>
<!ATTLIST topping amount CDATA #REQUIRED >
<!ELEMENT span EMPTY>
<!ATTLIST span m CDATA #REQUIRED >
<!ELEMENT width EMPTY>
<!ATTLIST width m CDATA #REQUIRED >
<!ELEMENT thickness EMPTY>
<!ATTLIST thickness m CDATA #REQUIRED >
<!ELEMENT construction-depth EMPTY>
<!ATTLIST construction-depth m CDATA #REQUIRED >
<!ELEMENT length EMPTY>
<!ATTLIST length m CDATA #REQUIRED >
<!ELEMENT area EMPTY>
<!ATTLIST area m_2 CDATA #REQUIRED >
<!ELEMENT reinforcement EMPTY>
<!ATTLIST reinforcement prcnt CDATA #REQUIRED >
<!ELEMENT loadbearing EMPTY>

F.3. cexml_nl.dtd
<!ELEMENT cexml
(geprefabriceerd-betonnen-element|plaat|voorgespannen-vloerplaat-met-
toplaag|toplaag|voorgewapende-vloerplaat|kanaalplaat|kanaalplaat-met-toplaag|toplaag|dubbele-
T|dubbele-T-met-toplaag|toplaag|blok|ligger|voorgespannen-rechthoekige-ligger|voorgespannen-
omgekeerde-L-ligger|voorgespannen-T-ligger|kolom|interne-kolom|wandkolom|hoekkolom|overige-
elementen|toplaag)*>
<!ELEMENT geprefabriceerd-betonnen-element EMPTY>
<!ATTLIST geprefabriceerd-betonnen-element amount CDATA #REQUIRED >
<!ELEMENT plaat (overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST plaat amount CDATA #REQUIRED >
<!ELEMENT voorgespannen-vloerplaat-met-toplaag
(overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST voorgespannen-vloerplaat-met-toplaag amount CDATA #REQUIRED >
<!ELEMENT voorgewapende-vloerplaat

146

Appendix F. Document Type Definitions (DTD’s)

(overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST voorgewapende-vloerplaat amount CDATA #REQUIRED >
<!ELEMENT kanaalplaat (overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST kanaalplaat amount CDATA #REQUIRED >
<!ELEMENT kanaalplaat-met-toplaag
(overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST kanaalplaat-met-toplaag amount CDATA #REQUIRED >
<!ELEMENT dubbele-T (overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST dubbele-T amount CDATA #REQUIRED >
<!ELEMENT dubbele-T-met-toplaag
(overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST dubbele-T-met-toplaag amount CDATA #REQUIRED >
<!ELEMENT blok (overspanning|breedte|dikte|dragen-van-belasting)*>
<!ATTLIST blok amount CDATA #REQUIRED >
<!ELEMENT ligger (constructiehoogte|overspanning)*>
<!ATTLIST ligger amount CDATA #REQUIRED >
<!ELEMENT voorgespannen-rechthoekige-ligger (constructiehoogte|overspanning)*>
<!ATTLIST voorgespannen-rechthoekige-ligger amount CDATA #REQUIRED >
<!ELEMENT voorgespannen-omgekeerde-L-ligger (constructiehoogte|overspanning)*>
<!ATTLIST voorgespannen-omgekeerde-L-ligger amount CDATA #REQUIRED >
<!ELEMENT voorgespannen-T-ligger (constructiehoogte|overspanning)*>
<!ATTLIST voorgespannen-T-ligger amount CDATA #REQUIRED >
<!ELEMENT kolom (lengte|oppervlakte)*>
<!ATTLIST kolom amount CDATA #REQUIRED >
<!ELEMENT interne-kolom (lengte|oppervlakte)*>
<!ATTLIST interne-kolom amount CDATA #REQUIRED >
<!ELEMENT wandkolom (wapening|lengte|oppervlakte)*>
<!ATTLIST wandkolom amount CDATA #REQUIRED >
<!ELEMENT hoekkolom (wapening|lengte|oppervlakte)*>
<!ATTLIST hoekkolom amount CDATA #REQUIRED >
<!ELEMENT overige-elementen EMPTY>
<!ATTLIST overige-elementen amount CDATA #REQUIRED >
<!ELEMENT toplaag (dikte)*>
<!ATTLIST toplaag amount CDATA #REQUIRED >
<!ELEMENT overspanning EMPTY>
<!ATTLIST overspanning m CDATA #REQUIRED >
<!ELEMENT breedte EMPTY>
<!ATTLIST breedte m CDATA #REQUIRED >
<!ELEMENT dikte EMPTY>
<!ATTLIST dikte m CDATA #REQUIRED >
<!ELEMENT constructiehoogte EMPTY>
<!ATTLIST constructiehoogte m CDATA #REQUIRED >
<!ELEMENT lengte EMPTY>
<!ATTLIST lengte m CDATA #REQUIRED >
<!ELEMENT oppervlakte EMPTY>
<!ATTLIST oppervlakte m_2 CDATA #REQUIRED >
<!ELEMENT wapening EMPTY>
<!ATTLIST wapening prcnt CDATA #REQUIRED >
<!ELEMENT dragen-van-belasting EMPTY>

F.4. pce_en_procurement.dtd
<!ELEMENT envelope (sender,recipient,businessprocess,message)>
<!ELEMENT sender (address)>
<!ELEMENT recipient (address)>
<!ELEMENT address (#PCDATA)>

147

Appendix F. Document Type Definitions (DTD’s)

<!ELEMENT message (cexml)>
<!ELEMENT cexml (prefab-concrete-element|slab|
composite-solid-prestressed-soffit-slab|topping|
composite-lattice-girder-soffit-slab|hollow-core-slab|
composite-hollow-core-slab|topping|double-T|composite-double-T|topping|
block|beam|reinforced-rectangular-beam|reinforced-inverted-L-beam|
reinforced-T-beam|column|internal-column|edge-column|corner-column|
other-elements|topping)*>
<!ELEMENT prefab-concrete-element EMPTY>
<!ATTLIST prefab-concrete-element amount CDATA #REQUIRED >
<!ELEMENT slab (span|width|thickness|loadbearing)*>
<!ATTLIST slab amount CDATA #REQUIRED >
<!ELEMENT composite-solid-prestressed-soffit-slab (span|width|thickness|loadbearing)*>
<!ATTLIST composite-solid-prestressed-soffit-slab amount CDATA #REQUIRED >
<!ELEMENT composite-lattice-girder-soffit-slab (span|width|thickness|loadbearing)*>
<!ATTLIST composite-lattice-girder-soffit-slab amount CDATA #REQUIRED >
<!ELEMENT hollow-core-slab (span|width|thickness|loadbearing)*>
<!ATTLIST hollow-core-slab amount CDATA #REQUIRED >
<!ELEMENT composite-hollow-core-slab (span|width|thickness|loadbearing)*>
<!ATTLIST composite-hollow-core-slab amount CDATA #REQUIRED >
<!ELEMENT double-T (span|width|thickness|loadbearing)*>
<!ATTLIST double-T amount CDATA #REQUIRED >
<!ELEMENT composite-double-T (span|width|thickness|loadbearing)*>
<!ATTLIST composite-double-T amount CDATA #REQUIRED >
<!ELEMENT block (span|width|thickness|loadbearing)*>
<!ATTLIST block amount CDATA #REQUIRED >
<!ELEMENT beam (construction-depth|span)*>
<!ATTLIST beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-rectangular-beam (construction-depth|span)*>
<!ATTLIST reinforced-rectangular-beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-inverted-L-beam (construction-depth|span)*>
<!ATTLIST reinforced-inverted-L-beam amount CDATA #REQUIRED >
<!ELEMENT reinforced-T-beam (construction-depth|span)*>
<!ATTLIST reinforced-T-beam amount CDATA #REQUIRED >
<!ELEMENT column (length|area)*>
<!ATTLIST column amount CDATA #REQUIRED >
<!ELEMENT internal-column (length|area)*>
<!ATTLIST internal-column amount CDATA #REQUIRED >
<!ELEMENT edge-column (reinforcement|length|area)*>
<!ATTLIST edge-column amount CDATA #REQUIRED >
<!ELEMENT corner-column (reinforcement|length|area)*>
<!ATTLIST corner-column amount CDATA #REQUIRED >
<!ELEMENT other-elements EMPTY>
<!ATTLIST other-elements amount CDATA #REQUIRED >
<!ELEMENT topping (thickness)*>
<!ATTLIST topping amount CDATA #REQUIRED >
<!ELEMENT span EMPTY>
<!ATTLIST span m CDATA #REQUIRED >
<!ELEMENT width EMPTY>
<!ATTLIST width m CDATA #REQUIRED >
<!ELEMENT thickness EMPTY>
<!ATTLIST thickness m CDATA #REQUIRED >
<!ELEMENT construction-depth EMPTY>
<!ATTLIST construction-depth m CDATA #REQUIRED >
<!ELEMENT length EMPTY>
<!ATTLIST length m CDATA #REQUIRED >
<!ELEMENT area EMPTY>
<!ATTLIST area m_2 CDATA #REQUIRED >
<!ELEMENT reinforcement EMPTY>
<!ATTLIST reinforcement prcnt CDATA #REQUIRED >
<!ELEMENT loadbearing EMPTY>

148

Appendix F. Document Type Definitions (DTD’s)

<!ELEMENT businessprocess (bpname, bpstep+)>
<!ELEMENT bpname (#PCDATA)>
<!ELEMENT bpstep (#PCDATA)>

149

Appendix F. Document Type Definitions (DTD’s)

150

Appendix G. XML files

G.1. cexml.xml
This is the central vocabulary, containing all the information about prefab concrete
elements, their characteristics, units, etcetera in both English and Dutch.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cexml SYSTEM "cexml_message.dtd">
<cexml xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:html="http://www.w3.org/1999/xhtml">

<builtobject>
<name language="en">built-object</name>
<name language="nl">gebouwd-object</name>
<characteristics/>
<builtobject>

<name language="en">prefab-concrete-element</name>
<name language="nl">geprefabriceerd-betonnen-element</name>
<characteristics/>
<builtobject>

<name language="en">slab</name>
<name language="nl">plaat</name>
<characteristics>

<quantification>
<name language="en">span</name>

</quantification>
<quantification>

<name language="en">width</name>
</quantification>
<quantification>

<name language="en">thickness</name>
</quantification>
<function>

<name language="en">loadbearing</name>
<name language="nl">dragen-van-belasting</name>

</function>
</characteristics>
<builtobject>

<name language="en">composite-solid-prestressed-soffit-slab</name>
<name language="nl">voorgespannen-vloerplaat-met-toplaag</name>
<characteristics>

<builtobject>
<name language="nl">toplaag</name>
<name language="en">topping</name>

</builtobject>
</characteristics>

</builtobject>
<builtobject>

<name language="en">composite-lattice-girder-soffit-slab</name>
<name language="nl">voorgewapende-vloerplaat</name>
<characteristics/>

</builtobject>
<builtobject>

<name language="en">hollow-core-slab</name>

151

Appendix G. XML files

<name language="nl">kanaalplaat</name>
<characteristics/>
<builtobject>

<name language="en">composite-hollow-core-slab</name>
<name language="nl">kanaalplaat-met-toplaag</name>
<characteristics>

<builtobject>
<name language="nl">toplaag</name>
<name language="en">topping</name>

</builtobject>
</characteristics>

</builtobject>
</builtobject>
<builtobject>

<name language="en">double-T</name>
<name language="nl">dubbele-T</name>
<characteristics/>
<builtobject>

<name language="en">composite-double-T</name>
<name language="nl">dubbele-T-met-toplaag</name>
<characteristics>

<builtobject>
<name language="nl">toplaag</name>
<name language="en">topping</name>

</builtobject>
</characteristics>

</builtobject>
</builtobject>
<builtobject>

<name language="en">block</name>
<name language="nl">blok</name>
<characteristics/>

</builtobject>
</builtobject>
<builtobject>

<name language="en">beam</name>
<name language="nl">ligger</name>
<characteristics>

<quantification>
<name language="en">construction-depth</name>

</quantification>
<quantification>

<name language="en">span</name>
</quantification>

</characteristics>
<builtobject>

<name language="en">reinforced-rectangular-beam</name>
<name language="nl">voorgespannen-rechthoekige-ligger</name>
<characteristics/>

</builtobject>
<builtobject>

<name language="en">reinforced-inverted-L-beam</name>
<name language="nl">voorgespannen-omgekeerde-L-ligger</name>
<characteristics/>

</builtobject>
<builtobject>

<name language="en">reinforced-T-beam</name>
<name language="nl">voorgespannen-T-ligger</name>
<characteristics/>

</builtobject>
</builtobject>

152

Appendix G. XML files

<builtobject>
<name language="en">column</name>
<name language="nl">kolom</name>
<characteristics>

<quantification>
<name language="en">length</name>

</quantification>
<quantification>

<name language="en">area</name>
</quantification>

</characteristics>
<builtobject>

<name language="en">internal-column</name>
<name language="nl">interne-kolom</name>
<characteristics/>

</builtobject>
<builtobject>

<name language="en">edge-column</name>
<name language="nl">wandkolom</name>
<characteristics>

<quantification>
<name language="en">reinforcement</name>

</quantification>
</characteristics>

</builtobject>
<builtobject>

<name language="en">corner-column</name>
<name language="nl">hoekkolom</name>
<characteristics>

<quantification>
<name language="en">reinforcement</name>

</quantification>
</characteristics>

</builtobject>
</builtobject>

</builtobject>
<builtobject>

<name language="en">other-elements</name>
<name language="nl">overige-elementen</name>
<characteristics/>
<builtobject>

<name language="nl">toplaag</name>
<name language="en">topping</name>
<characteristics>

<quantification>
<name language="en">thickness</name>

</quantification>
</characteristics>

</builtobject>
</builtobject>

</builtobject>
<quantification>

<name language="en">span</name>
<name language="nl">overspanning</name>
<amount/>
<unit>

<name language="si">m</name>
</unit>

</quantification>
<quantification>

<name language="en">width</name>

153

Appendix G. XML files

<name language="nl">breedte</name>
<amount/>
<unit>

<name language="si">m</name>
</unit>

</quantification>
<quantification>

<name language="en">thickness</name>
<name language="nl">dikte</name>
<amount/>
<unit>

<name language="si">m</name>
</unit>

</quantification>
<quantification>

<name language="en">construction-depth</name>
<name language="nl">constructiehoogte</name>
<amount/>
<unit>

<name language="si">m</name>
</unit>

</quantification>
<quantification>

<name language="en">length</name>
<name language="nl">lengte</name>
<amount/>
<unit>

<name language="si">m</name>
</unit>

</quantification>
<quantification>

<name language="en">area</name>
<name language="nl">oppervlakte</name>
<amount/>
<unit>

<name language="si">m_2</name>
</unit>

</quantification>
<quantification>

<name language="en">reinforcement</name>
<name language="nl">wapening</name>
<amount/>
<unit>

<name language="si">prcnt</name>
</unit>

</quantification>
<function>

<name language="en">loadbearing</name>
<name language="nl">dragen-van-belasting</name>

</function>
<unit>

<name language="si">m</name>
<name language="en">meter</name>
<name language="nl">meter</name>

</unit>
<unit>

<name language="si">m_2</name>
<name language="en">square-meter</name>
<name language="nl">vierkante-meter</name>

</unit>
<unit>

154

Appendix G. XML files

<name language="si">prcnt</name>
<name language="en">percent</name>
<name language="nl">procent</name>

</unit>
</cexml>

G.2. catalog.xml
This XML file is the Dutch catalog, which complies to a DTD generated out of the
central vocabulary using the contexts "Dutch language" and the field "prefab
concrete elements".

<!DOCTYPE cexml SYSTEM "cexml_nl.dtd">
<cexml>

<kanaalplaat amount="">
<overspanning m="5"/>
<dikte m="0.110"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="5"/>
<dikte m="0.150"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="6"/>
<dikte m="0.150"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="6"/>
<dikte m="0.200"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="7"/>
<dikte m="0.150"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="7"/>
<dikte m="0.200"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="7"/>
<dikte m="0.220"/>

</kanaalplaat>
<kanaalplaat amount="">

<overspanning m="7"/>
<dikte m="0.250"/>

</kanaalplaat>
<voorgespannen-rechthoekige-ligger amount="">

<overspanning m="4"/>
<constructiehoogte m="0.252"/>

</voorgespannen-rechthoekige-ligger>
<voorgespannen-rechthoekige-ligger amount="">

<overspanning m="5"/>
<constructiehoogte m="0.288"/>

</voorgespannen-rechthoekige-ligger>

155

Appendix G. XML files

<voorgespannen-rechthoekige-ligger amount="">
<overspanning m="6"/>
<constructiehoogte m="0.332"/>

</voorgespannen-rechthoekige-ligger>
<voorgespannen-rechthoekige-ligger amount="">

<overspanning m="7"/>
<constructiehoogte m="0.386"/>

</voorgespannen-rechthoekige-ligger>
<voorgespannen-T-ligger amount="">

<overspanning m="4"/>
<constructiehoogte m="0.246"/>

</voorgespannen-T-ligger>
<voorgespannen-T-ligger amount="">

<overspanning m="5"/>
<constructiehoogte m="0.286"/>

</voorgespannen-T-ligger>
<voorgespannen-T-ligger amount="">

<overspanning m="6"/>
<constructiehoogte m="0.334"/>

</voorgespannen-T-ligger>
<voorgespannen-T-ligger amount="">

<overspanning m="7"/>
<constructiehoogte m="0.384"/>

</voorgespannen-T-ligger>
</cexml>

156

Bibliography
Raman, Dick.XML/EDI Cyber assisted business in practiceTIE Holding 1999.

ISBN 90-805233-2-1

Radeke, dr. Elke.GEN global engineering networking final reportSiemens C-LAB
1999

McLaughlin, Brett.Java and XMLO’Reilly 2000. ISBN 0-596-00016-2

Eckstein, Robert.XML pocket referenceO’Reilly 1999. ISBN 1-56592-709-5

Lutz, Mark.Python pocket referenceO’Reilly 1998. ISBN 1-56592-500-9

Walsh, Norman & Muellner, Leonard.DocBook, the definitive guideO’Reilly 1999.
ISBN 1-56592-580-7

Goodchild, C.H.Economic concrete frame elementsBritish Cement Association
1997. ISBN 0-7210-1488-7

www.ebxml.org

www.w3.org

www.eConstruct.org

www.xml.com

www.xml.org

www.xmlhack.com

157

158

Glossary
Apache

The most widely used web server. A web server is the remote program that
gives you an Internet page when you click a link in your browser.

ceXML

The name chosen for my vocabulary. It stands forCivil Engineering XML.

CSS

Cascading Style Sheets. A way to specify how things should look when an
Internet page is displayed in your browser.

DTD

Document Type Definition. A separate file that specifies the rules to which an
XML file must adhere.

eConstruct

Electronic business in the building and CONSTRUCTion industry: preparing
for the new internet. The European project I’m enlisted in. It’s aim is to make
electronic communication a reality in the still mainly paper based construction
industry.

ebXML

Electronic Business XML. A joint initiative of all big players in the
ecommerce business (only Microsoft is missing) to provide an open platform
for electronic business.

159

Glossary

EDI

Electronic Data Interchange. The exchange of information using article
numbers and codes by big, monolytic industries.

GEN/GENial

Global Engineering Networking. An effort at creating a network where
engineers can get the information they need and where suppliers can provide
the information needed by engineers. GENial is an implementation of GEN.

IFC

Industry Foundation Classes. A model for the building and construction
industry, meant for the electronic representation of things that occur in a
constructed facility, both physical and abstract (like services).

LexiCon

The LexiCon is a set of programs coupled with it’s own meta-model which is
built by the Dutch company STABU in order to create a information system
covering the entire building process.

Mozilla

An Internet browser. Descendant from the well-known Netscape. Is still in
beta, but supports most of the newest standards and tries actively to be as
standards-compliant as possible.

160

Glossary

PDT

Product Data Technology. A generic term for models that deal with product
data (like doors or pencils).

Python

A programming language. Member of the family of so-called scripting
languages. Especially good at rapid prototyping and for gluing together
various bits and pieces of other programs.

Sed

A small command line program that can modify text files according to
command-line parameters.

STEP

STandard for the Exchange of Product model data. This constitutes a standard
way of dealing with product data. Mainly used in big companies in the
automobile, shipbuilding, oil drilling and airplane manufacturing business.

tag

A tag is - in the XML world - a nametag that is connected to a piece of
information. If you want to indicate that the word "this" should be in italics,
you would - in XML - place a starting-nametag at the beginning of the word
"this" and a closing-nametag at the end. In XML the nametag is enclosed in
less-than and greater-than signs. It works out like this:
<italic>this</italic> .

161

Glossary

UML

Unified Modelling Language. A standard way of drawing diagrams, Use
Cases, etcetera.

Use Case

In the Unified Modelling Language (UML), a Use Case is a concept, a way of
thinking about a problem. The problem is described (or better:depicted) by
means ofactionsbetweenactors.

XML

eXtensible Markup Language, a text format which is able to tag parts of the
data contained within (as text) with meta-information. An example:
<italic>this ought to be in italics</italic>.

XSL

eXtensible Stylesheet Language. It consists of two parts, XSL/FO for
formatting and XSL/T for transformation. They are designed to work together,
but XSL/T has proven very useful as a stand-alone technology, thereby taking
on a life of it’s own.

XSL/FO

eXtensible Stylesheet Language/Formatting Objects part. Like CSS, this is a
language used to specify the visual representation of XML. The difference is
that XSL/FO is also used to format an XML directly for printing.

XSL/T

162

Glossary

eXtensible Stylesheet Language/Transformation part. A language to specify
rules with which to transform an incoming XML file into another format
(probably also an XML format).

163

Glossary

164

Colophon
This document was made using DocBook. DocBook is an XML DTD for making
structured documents. Practice what you preach, so to say. Editing was done with
the emacs editor, which has support for working with XML files. Diagrams were
made with Dia, still very much in beta, but freeware (as opposed to the horribly
expensive Rational Rose and the likes of it). Images were made with Gimp. All
editing, programming and diagram drawing was done on Linux, unbeatable for this
kind of work, especially for the server-side Internet programming.

165

166

